已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of turbulent heat flux model for unsteady forced convective heat transfer of small-to-medium Prandtl-number fluids based on deep learning

普朗特数 湍流普朗特数 机械 对流换热 湍流 强迫对流 传热 热流密度 材料科学 热力学 努塞尔数 物理 雷诺数
作者
Lixia Chen,Chao Yuan,Hong-Na Zhang,Xiaobin Li,Yu Ma,Feng‐Chen Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:194: 123115-123115 被引量:5
标识
DOI:10.1016/j.ijheatmasstransfer.2022.123115
摘要

• Development of turbulent heat flux models suitable for low-to-medium Pr fluids using deep neural network. • Establishment of turbulent heat flux models suitable for complex conditions with flow separations. • Adopting proper orthogonal decomposition method to carry out the triple decomposition for unsteady flow. Turbulent heat flux (THF) models are used for the closure of the THF term when solving the steady/unsteady Reynolds-averaged scalar transport equation to simulate the turbulent heat transfer in industry. It is known that the simple gradient diffusion hypothesis (SGDH) has deficiencies under complex conditions with flow separations. To develop a more general THF model, this paper firstly establishes a high-fidelity database of forced convective heat transfer passing a circular cylinder under different Prandtl number ( Pr ) conditions at the Reynolds number ( Re ) of 500 via the direct numerical simulations. Proper orthogonal decomposition method is then employed for the triple decomposition on unsteady turbulent flow with the first two orders of eigenmodes reconstructing the large-scale field and the remaining reconstructing the turbulent field. Then, architectures using different neural network structures based on tensor basis neural network (TBNN), including MLP-TBNN-THF which adopts the multilayer perceptron (MLP) and ResNet-TBNN-THF that uses the residual network (ResNet), are constructed to predict normalized THF from large-scale flow features and Pr . Posterior tests are carried out on different Pr s and three different Re s: 500, 5000 and 16900 using the well-trained TBNN-THF models to evaluate their performance and generalization capability. Most models proposed in this paper predict the heat transfer more accurately than the SGDH model, even when extended to conditions out of the range trained. The failure of the isotropic assumption of SGDH model is observed in most regions. In that case, it is vitally necessary to use a model like proposed in this paper to simulate the THF term more accurately. In conclusion, the THF model, which is appropriate for complex working conditions and fluids with small-to-medium range of Pr , obtained by deep learning method in this paper, is helpful to improve the prediction accuracy of temperature field or concentration field by steady or unsteady Reynolds-averaged Naiver-Stokes approach in engineering. Besides, the current framework can be generalized to scalar-flux modeling under other conditions with the supplement of more databases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
cjl发布了新的文献求助10
3秒前
3秒前
4秒前
体贴精灵完成签到 ,获得积分10
7秒前
7秒前
11秒前
哈哈哈哈呵呵完成签到 ,获得积分10
11秒前
NexusExplorer应助啦啦啦啦采纳,获得10
17秒前
NexusExplorer应助GQ采纳,获得10
18秒前
wy.he应助发嗲的雨筠采纳,获得50
20秒前
小蘑菇应助王二079采纳,获得10
20秒前
Sana发布了新的文献求助30
23秒前
小马甲应助顺心的紫菜采纳,获得10
23秒前
24秒前
桐桐应助高高采纳,获得10
25秒前
肥波完成签到,获得积分10
27秒前
DaYongDan发布了新的文献求助10
30秒前
31秒前
32秒前
星空下的皮先生完成签到,获得积分10
33秒前
所所应助yfyhjz采纳,获得10
34秒前
39秒前
40秒前
41秒前
传奇3应助酸奶燕麦球采纳,获得10
41秒前
sxj发布了新的文献求助10
44秒前
张江泽发布了新的文献求助10
44秒前
44秒前
乐乐应助橘子头宝贝采纳,获得10
45秒前
老实白云完成签到,获得积分20
47秒前
48秒前
48秒前
48秒前
49秒前
scugy发布了新的文献求助10
51秒前
xzy998应助皮皮龙OVO采纳,获得10
51秒前
53秒前
敏感惜萍发布了新的文献求助10
54秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053235
求助须知:如何正确求助?哪些是违规求助? 3591415
关于积分的说明 11412554
捐赠科研通 3317557
什么是DOI,文献DOI怎么找? 1824756
邀请新用户注册赠送积分活动 896235
科研通“疑难数据库(出版商)”最低求助积分说明 817367