已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology

卵巢癌 人工智能 深度学习 深信不疑网络 癌症 计算机科学 管道(软件) 卵巢癌 特征提取 机器学习 病理 生物 模式识别(心理学) 医学 遗传学 程序设计语言
作者
Duhita Sengupta,Sk Nishan Ali,Aditya Bhattacharya,Joy Mustafi,Asima Mukhopadhyay
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (1): e0261181-e0261181 被引量:12
标识
DOI:10.1371/journal.pone.0261181
摘要

Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyze the malignant potential of cancer cells. Considering the structural alteration of the nucleus in cancer cells, various groups have developed machine learning techniques based on variation in nuclear morphometric information like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like deep learning have also been tested for analyzing immunohistochemistry images of tissue samples for diagnosing various cancers. We aim to correlate the morphometric features of the nucleus along with the distribution of nuclear lamin proteins with classical machine learning to differentiate between normal and ovarian cancer tissues. It has already been elucidated that in ovarian cancer, the extent of alteration in nuclear shape and morphology can modulate genetic changes and thus can be utilized to predict the outcome of low to a high form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian cancer versus normal tissue and developed a dual pipeline architecture that combines the matrices of morphometric parameters with deep learning techniques of auto feature extraction from pre-processed images. This novel Deep Hybrid Learning model, though derived from classical machine learning algorithms and standard CNN, showed a training and validation AUC score of 0.99 whereas the test AUC score turned out to be 1.00. The improved feature engineering enabled us to differentiate between cancerous and non-cancerous samples successfully from this pilot study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犬来八荒发布了新的文献求助10
1秒前
1秒前
2秒前
柔弱诗筠发布了新的文献求助10
2秒前
3秒前
orixero应助企鹅没烦恼采纳,获得10
3秒前
4秒前
坦率广山完成签到,获得积分10
4秒前
繁荣的代秋完成签到 ,获得积分10
4秒前
5秒前
6秒前
7秒前
桐桐应助犬来八荒采纳,获得10
7秒前
Ma完成签到,获得积分10
8秒前
吉吉发布了新的文献求助10
8秒前
小c完成签到,获得积分20
8秒前
绺妙发布了新的文献求助10
9秒前
CodeCraft应助wop111采纳,获得10
9秒前
9秒前
tleeny完成签到,获得积分20
10秒前
JamesPei应助天真傲之采纳,获得10
10秒前
eliauk完成签到 ,获得积分10
11秒前
孙廷宇发布了新的文献求助10
13秒前
13秒前
小c发布了新的文献求助10
13秒前
一一发布了新的文献求助10
15秒前
16秒前
17秒前
仲秋二三完成签到,获得积分10
20秒前
22秒前
23秒前
悦耳安白发布了新的文献求助10
24秒前
在水一方应助舒适的傲柔采纳,获得10
25秒前
平淡的藏花完成签到 ,获得积分20
26秒前
ff发布了新的文献求助10
27秒前
27秒前
Jasper应助乔乔那个孩子采纳,获得10
28秒前
nicelily发布了新的文献求助10
28秒前
28秒前
魁梧的傲芙完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055