Time and path prediction of landslides using InSAR and flow model

山崩 干涉合成孔径雷达 地质学 大地测量学 流离失所(心理学) 遥感 时间序列 运动学 加速度 地震学 合成孔径雷达 计算机科学 心理治疗师 物理 机器学习 经典力学 心理学
作者
Priyom Roy,Tapas R. Martha,Kirti Khanna,Nirmala Jain,K. Vinod Kumar
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:271: 112899-112899 被引量:42
标识
DOI:10.1016/j.rse.2022.112899
摘要

Landslides originating from remote steep slopes render people living downhill vulnerable, unaware of the impending danger. Identifications of slow-moving mountain slopes are possible now due to time series measurement from space using microwave satellite data and the InSAR technique, which potentially can detect displacement at millimetre level. Availability of open-source Sentinel-1 data has revolutionised the study involving landslide kinematics and predicting the time of failure. However, identification of accelerating trend, demarcation of release area and prediction of flow path after failure initiation are still challenging. In this paper, we present a novel method for time and path prediction of landslides using two large landslides (Kikruma and Kotropi) located in the Himalayas in India. Sentinel-1 data stack was processed using the Persistent Scatterer and Small Baseline Subset interferometric techniques to analyse the trend of ground deformation leading to slope failures. The displacement time series of the measurement points, analysed using inverse velocity and modified inverse velocity methods, show that the instability had commenced almost a year or more with the final onset of acceleration triggered by heavy rainfall, couple of weeks prior to the actual failure. The acceleration image created from displacement time series data was clustered using image segmentation techniques to demarcate the release area of landslides. The flow simulation was done using the Voellmy friction model with a high-resolution DEM to predict the flow path. The analysis done for Kikruma and Kotropi landslide case studies with the proposed method provided a safe prediction of the time of landslide with ~90% accuracy of the flow path prediction. Results show that the method demonstrated in this study may evolve as an effective tool for landslide early warning in hilly areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助xing_采纳,获得10
1秒前
机智的代真完成签到,获得积分20
2秒前
英姑应助解语花采纳,获得10
3秒前
4秒前
4秒前
Hilda007应助飘来一朵云采纳,获得20
5秒前
宋佳完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
27完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
sophia完成签到 ,获得积分10
9秒前
qinqin发布了新的文献求助10
9秒前
10秒前
共享精神应助王松桐采纳,获得10
10秒前
geopotter完成签到,获得积分10
10秒前
英姑应助哈哈哈哈采纳,获得10
11秒前
Akim应助嘘嘘采纳,获得10
11秒前
12秒前
Orange应助啦啦啦啦采纳,获得10
13秒前
朱大帅发布了新的文献求助10
13秒前
27发布了新的文献求助10
13秒前
Jasper应助yu采纳,获得10
14秒前
刘芊完成签到,获得积分10
14秒前
15秒前
15秒前
绿野仙踪完成签到,获得积分10
16秒前
jiemy完成签到,获得积分10
17秒前
xing_发布了新的文献求助10
17秒前
chi发布了新的文献求助20
17秒前
小强呐完成签到 ,获得积分10
18秒前
眯眯眼完成签到 ,获得积分10
18秒前
粉红豹发布了新的文献求助20
18秒前
呆呆完成签到 ,获得积分10
19秒前
开心丸子发布了新的文献求助10
19秒前
小张同学完成签到,获得积分10
20秒前
东方三问发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397179
求助须知:如何正确求助?哪些是违规求助? 4517412
关于积分的说明 14063874
捐赠科研通 4429328
什么是DOI,文献DOI怎么找? 2432273
邀请新用户注册赠送积分活动 1424816
关于科研通互助平台的介绍 1403865