A transfer learning approach to few-shot segmentation of novel white matter tracts

分割 人工智能 计算机科学 市场细分 学习迁移 卷积神经网络 模式识别(心理学) 白质 深度学习 任务(项目管理) 计算机视觉 磁共振成像 业务 放射科 医学 经济 营销 管理
作者
Qi Lu,Wan Liu,Zhizheng Zhuo,Yuxing Li,Yunyun Duan,Pinnan Yu,Liying Qu,Chuyang Ye,Yaou Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102454-102454 被引量:17
标识
DOI:10.1016/j.media.2022.102454
摘要

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based segmentation model generally requires a large number of manual delineations of WM tracts, which can be expensive and time-consuming. Although it is possible to carefully curate abundant training data for a set of WM tracts of interest, there can also be novel WM tracts-i.e., WM tracts that are not included in the existing annotated WM tracts-that are specific to a new scientific problem, and it is desired that the novel WM tracts can be segmented without repeating the laborious collection of a large number of manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few annotated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the pretraining and fine-tuning framework, we propose an improved transfer learning approach to the segmentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer for the target model that segments novel WM tracts. In addition, to allow further improvement of the initialization of the last layer and thus the segmentation performance in the few-shot setting, we develop a simple yet effective data augmentation strategy that generates synthetic annotated images with tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI scans from public and private datasets under various experimental settings, and the results indicate that our method improves the performance of few-shot segmentation of novel WM tracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhenjl完成签到,获得积分20
刚刚
搜集达人应助samvega采纳,获得10
刚刚
结实的泥猴桃完成签到,获得积分10
1秒前
BRID发布了新的文献求助10
1秒前
1秒前
qj完成签到 ,获得积分10
1秒前
小巧的柠檬完成签到,获得积分10
1秒前
QuJiahao完成签到,获得积分10
1秒前
曲奇不躺平完成签到,获得积分10
1秒前
月月发布了新的文献求助10
2秒前
liu完成签到,获得积分10
2秒前
小虫学长完成签到,获得积分10
3秒前
3秒前
3秒前
wawaeryu完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助么么叽采纳,获得10
4秒前
微笑的冰烟应助悦耳从安采纳,获得10
5秒前
wsy完成签到,获得积分10
5秒前
zzjjxx应助温柔翰采纳,获得10
6秒前
yao完成签到,获得积分10
6秒前
ding应助www采纳,获得10
6秒前
TY完成签到 ,获得积分10
7秒前
李梦媛完成签到 ,获得积分10
8秒前
hhhhhh完成签到,获得积分10
8秒前
英俊的铭应助欣喜书蕾采纳,获得10
8秒前
lxlcx应助繁荣的代秋采纳,获得200
8秒前
zlc发布了新的文献求助10
9秒前
9秒前
10秒前
903869831@qq.com完成签到,获得积分10
10秒前
10秒前
10秒前
橙色小瓶子完成签到,获得积分10
11秒前
十二完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
完美世界应助SRsora采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093