Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis

包含能量 能源消耗 环境经济学 物流分析 消费(社会学) 北京 能源会计 能量流 节能 城市新陈代谢 投入产出模型 能量(信号处理) 高效能源利用 能量分析 经济 城市规划 工程类 地理 生态学 城市密度 土木工程 宏观经济学 考古 中国 社会学 电气工程 统计 废物管理 生物 社会科学 数学
作者
Shaoqing Chen,Bin Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:138: 99-107 被引量:315
标识
DOI:10.1016/j.apenergy.2014.10.055
摘要

Energy consumption has always been a central issue for sustainable urban assessment and planning. Different forms of energy analysis can provide various insights for energy policy making. This paper brought together three approaches for energy consumption accounting, i.e., energy flow analysis (EFA), input–output analysis (IOA) and ecological network analysis (ENA), and compared their different perspectives and the policy implications for urban energy use. Beijing was used to exemplify the different energy analysis processes, and the 42 economic sectors of the city were aggregated into seven components. It was determined that EFA quantifies both the primary and final energy consumption of the urban components by tracking the different types of fuel used by the urban economy. IOA accounts for the embodied energy consumption (direct and indirect) used to produce goods and services in the city, whereas the control analysis of ENA quantifies the specific embodied energy that is regulated by the activities within the city’s boundary. The network control analysis can also be applied to determining which economic sectors drive the energy consumption and to what extent these sectors are dependent on each other for energy. So-called “controlled energy” is a new concept that adds to the analysis of urban energy consumption, indicating the adjustable energy consumed by sectors. The integration of insights from all three accounting perspectives further our understanding of sustainable energy use in cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光大有完成签到,获得积分10
1秒前
2秒前
cc完成签到,获得积分10
2秒前
Nia发布了新的文献求助30
2秒前
2秒前
Gt様完成签到 ,获得积分10
3秒前
答辩发布了新的文献求助10
3秒前
HAO完成签到,获得积分10
3秒前
3秒前
银银发布了新的文献求助10
3秒前
grisco完成签到,获得积分10
3秒前
4秒前
无敌鱼发布了新的文献求助10
4秒前
w32完成签到,获得积分10
4秒前
TuZhuling完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
笨笨的寒天完成签到,获得积分10
4秒前
852应助科研通管家采纳,获得10
4秒前
郦乞完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
KKKKKKK完成签到 ,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
yuyu完成签到,获得积分10
5秒前
Mmxn应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
panisa鹅完成签到,获得积分10
5秒前
pluto完成签到,获得积分10
6秒前
科研助手6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
科研助手6应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915