Effects of the electric field on ion crossover in vanadium redox flow batteries

电场 渡线 化学物理 电极 离子 流动电池 化学 材料科学 电解质 分析化学(期刊) 无机化学 色谱法 物理 量子力学 物理化学 人工智能 生物化学 有机化学 计算机科学
作者
Xiaoling Yang,Qiang Ye,Ping Cheng,Tianshou Zhao
出处
期刊:Applied Energy [Elsevier]
卷期号:145: 306-319 被引量:112
标识
DOI:10.1016/j.apenergy.2015.02.038
摘要

A thorough understanding of the mechanisms of ion crossover through the membranes in vanadium redox flow batteries (VRFBs) is critically important in making improvements to the battery’s efficiency and cycling performance. In this work, we develop a 2-D VRFB model to investigate the mechanisms of ion crossover and the associated impacts it has on the battery’s performance. Unlike previously described models in the literature that simulated a single cell by dividing it into the positive electrode, membrane, and negative electrode regions, the present model incorporates all possible ion crossover mechanisms in the entire cell without a need to specify any interfacial boundary conditions at the membrane/electrode interfaces, and hence accurately captures the Donnan-potential jumps and steep gradient of species concentrations at the membrane/electrode interfaces. With our model, a particular emphasis is given to investigation of the effect of the electric field on vanadium ion crossover. One of the significant findings is that an electric field exists in the membrane even under the open-circuit condition, primarily due to the presence of the H+ concentration gradient across the membrane. This finding suggests that vanadium ions can permeate through the membrane from H+-diluted to H+-concentrated sides via migration and convection. More importantly, it is found that the rate of vanadium ion crossover and capacity decay during charge and discharge vary with the magnitude of the electric field, which is influenced by the membrane properties and operating conditions. The simulations suggest that enhancing the electric-field-driven flow is a potential approach to minimizing the battery’s capacity decay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的夜山完成签到,获得积分10
刚刚
共享精神应助藏山归采纳,获得10
刚刚
银剑邪巫发布了新的文献求助10
刚刚
彪壮的若男完成签到 ,获得积分10
刚刚
1秒前
邓希静发布了新的文献求助10
2秒前
Cynthia.Z完成签到,获得积分10
2秒前
东郭水云发布了新的文献求助10
2秒前
2秒前
临泉完成签到,获得积分10
3秒前
chao发布了新的文献求助10
4秒前
授业解惑的哑铃完成签到,获得积分10
4秒前
铜离子完成签到,获得积分10
5秒前
5秒前
黄垚发布了新的文献求助10
5秒前
W_shuai完成签到,获得积分10
5秒前
深情安青应助冰夏采纳,获得10
5秒前
5秒前
congshen完成签到,获得积分10
5秒前
Cynthia.Z发布了新的文献求助10
6秒前
zh123完成签到,获得积分10
7秒前
7秒前
tianying完成签到,获得积分20
7秒前
阿谭完成签到,获得积分20
8秒前
神奇科研圆完成签到,获得积分10
8秒前
wanci应助贺裘采纳,获得10
9秒前
所所应助保安队长采纳,获得10
9秒前
藏山归完成签到,获得积分10
10秒前
倦鸟有言完成签到 ,获得积分10
11秒前
坚强三德完成签到 ,获得积分10
12秒前
Elena完成签到,获得积分10
12秒前
Erictancqmu完成签到,获得积分20
12秒前
grzzz发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
一条热带鱼完成签到,获得积分10
14秒前
15秒前
16秒前
fhhkckk3完成签到,获得积分10
16秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387961
求助须知:如何正确求助?哪些是违规求助? 2094424
关于积分的说明 5273051
捐赠科研通 1821158
什么是DOI,文献DOI怎么找? 908505
版权声明 559310
科研通“疑难数据库(出版商)”最低求助积分说明 485385