控制理论(社会学)
荷电状态
人工神经网络
电池(电)
观察员(物理)
趋同(经济学)
电动汽车
工程类
递归最小平方滤波器
电压
锂离子电池
等效电路
上下界
径向基函数
国家观察员
计算机科学
算法
数学
功率(物理)
人工智能
电气工程
控制(管理)
物理
非线性系统
经济
数学分析
经济增长
自适应滤波器
量子力学
作者
Xiaopeng Chen,Weixiang Shen,Mingxiang Dai,Zhenwei Cao,Jiong Jin,Ajay Kapoor
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2015-05-19
卷期号:65 (4): 1936-1947
被引量:184
标识
DOI:10.1109/tvt.2015.2427659
摘要
This paper presents a robust sliding-mode observer (RSMO) for state-of-charge (SOC) estimation of a lithium-polymer battery (LiPB) in electric vehicles (EVs). A radial basis function (RBF) neural network (NN) is employed to adaptively learn an upper bound of system uncertainty. The switching gain of the RSMO is adjusted based on the learned upper bound to achieve asymptotic error convergence of the SOC estimation. A battery equivalent circuit model (BECM) is constructed for battery modeling, and its BECM is identified in real time by using a forgetting-factor recursive least squares (FFRLS) algorithm. The experiments under the discharge current profiles based on EV driving cycles are conducted on the LiPB to validate the effectiveness and accuracy of the proposed framework for the SOC estimation.
科研通智能强力驱动
Strongly Powered by AbleSci AI