Identifying Patterns of Multimorbidity in Older Americans: Application of Latent Class Analysis

医学 潜在类模型 队列 置信区间 老年学 疾病 人口学 初级保健 样品(材料) 家庭医学 统计 内科学 化学 社会学 病理 数学 色谱法
作者
Heather E. Whitson,Kimberly S. Johnson,Richard Sloane,Christine T. Cigolle,Carl F. Pieper,Lawrence R. Landerman,Susan N. Hastings
出处
期刊:Journal of the American Geriatrics Society [Wiley]
卷期号:64 (8): 1668-1673 被引量:109
标识
DOI:10.1111/jgs.14201
摘要

Objectives To define multimorbidity “classes” empirically based on patterns of disease co‐occurrence in older Americans and to examine how class membership predicts healthcare use. Design Retrospective cohort study. Setting Nationally representative sample of Medicare beneficiaries in file years 1999–2007. Participants Individuals aged 65 and older in the Medicare Beneficiary Survey who had data available for at least 1 year after index interview (N = 14,052). Measurements Surveys (self‐report) were used to assess chronic conditions, and latent class analysis ( LCA ) was used to define multimorbidity classes based on the presence or absence of 13 conditions. All participants were assigned to a best‐fit class. Primary outcomes were hospitalizations and emergency department visits over 1 year. Results The primary LCA identified six classes. The largest portion of participants (32.7%) was assigned to the minimal disease class, in which most persons had fewer than two of the conditions. The other five classes represented various degrees and patterns of multimorbidity. Usage rates were higher in classes with greater morbidity, but many individuals could not be assigned to a particular class with confidence (sample misclassification error estimate = 0.36). Number of conditions predicted outcomes at least as well as class membership. Conclusion Although recognition of general patterns of disease co‐occurrence is useful for policy planning, the heterogeneity of persons with significant multimorbidity (≥3 conditions) defies neat classification. A simple count of conditions may be preferable for predicting usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
楠阿楠完成签到 ,获得积分10
1秒前
2秒前
2秒前
华仔应助许星意采纳,获得10
2秒前
2秒前
林子发布了新的文献求助10
2秒前
浮游应助大海采纳,获得10
4秒前
sunshine完成签到,获得积分10
4秒前
虎皮猫大人完成签到,获得积分10
5秒前
5秒前
SciGPT应助hyodong采纳,获得10
5秒前
八号仓上半场完成签到,获得积分10
6秒前
6秒前
6秒前
菌根发布了新的文献求助10
7秒前
ladette发布了新的文献求助10
7秒前
chenhuiwan完成签到,获得积分10
8秒前
明哲派完成签到,获得积分10
8秒前
李健的小迷弟应助魏阳宇采纳,获得10
9秒前
科研通AI6应助周才采纳,获得10
9秒前
低空飞行发布了新的文献求助10
9秒前
幸福的向日葵完成签到 ,获得积分10
9秒前
共享精神应助Jole采纳,获得10
12秒前
1804的回忆发布了新的文献求助10
12秒前
能干的荆发布了新的文献求助10
13秒前
CodeCraft应助阮绝悟采纳,获得10
13秒前
英姑应助哈哈哈哈采纳,获得10
14秒前
14秒前
14秒前
yoljun发布了新的文献求助10
14秒前
14秒前
zyj关闭了zyj文献求助
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
一介刁民完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318095
求助须知:如何正确求助?哪些是违规求助? 4460326
关于积分的说明 13878275
捐赠科研通 4350776
什么是DOI,文献DOI怎么找? 2389539
邀请新用户注册赠送积分活动 1383643
关于科研通互助平台的介绍 1353101