医学
心脏病学
内科学
狭窄
部分流量储备
管腔(解剖学)
冠状动脉疾病
冠状动脉
病变
钙化
剪应力
动脉
放射科
心肌梗塞
冠状动脉造影
病理
材料科学
复合材料
作者
Jun‐Bean Park,Gilwoo Choi,Eun Ju Chun,Hyun Jin Kim,Jonghanne Park,Ji-Hyun Jung,Min‐Ho Lee,Hiromasa Otake,Joon‐Hyung Doh,Chang‐Wook Nam,Eun‐Seok Shin,Bernard De Bruyne,Charles A. Taylor,Bon‐Kwon Koo
出处
期刊:Heart
[BMJ]
日期:2016-06-14
卷期号:102 (20): 1655-1661
被引量:98
标识
DOI:10.1136/heartjnl-2016-309299
摘要
Objective To assess the distribution of pressure and shear-related forces acting on atherosclerotic plaques and their association with lesion characteristics using coronary CT angiography (cCTA)-based computational fluid dynamics (CFD) model of epicardial coronary arteries. Methods Patient-specific models of epicardial coronary arteries were reconstructed from cCTA in 80 patients (12 women, 63.8±9.0 years). The pressure and wall shear stress (WSS) in left anterior descending coronary arteries were assessed using CFD. High-risk plaques were defined as the presence of at least one of the following adverse plaque characteristics: low-density plaque, positive remodelling, napkin-ring sign and spotty calcification. Results At resting condition, 39.5% of stenotic segments (% diameter stenosis 52.3±14.4%) were exposed to high WSS (>40 dyne/cm 2 ). When the stenotic lesion was subdivided into three segments, the distribution of WSS was different from that of pressure change and its magnitude was highest at minimal lumen area (p<0.001). High pressure gradient, proximal location, small lumen and short length were independent determinants of WSS (all p<0.05). The plaques exposed to the highest WSS tertile had a significantly greater proportion of high-risk plaques. The addition of WSS to % diameter stenosis significantly improved the measures of discrimination and reclassification of high-risk plaques (area under the curves from 0.540 to 0.718, p=0.031; net reclassification index 0.827, p<0.001). Conclusions The cCTA-based CFD method can improve the identification of high-risk plaques and the risk stratification for coronary artery disease patients by providing non-invasive measurements of WSS affecting coronary plaques.
科研通智能强力驱动
Strongly Powered by AbleSci AI