Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off

材料科学 亚稳态 合金 高熵合金 硬化(计算) 应变硬化指数 可塑性 冶金 微观结构 热力学 延展性(地球科学) 复合材料 蠕动 化学 物理 有机化学 图层(电子)
作者
Zhi Ming Li,K.G. Pradeep,Yun Deng,Dierk Raabe,Cemal Cem Taşan
出处
期刊:Nature [Springer Nature]
卷期号:534 (7606): 227-230 被引量:2616
标识
DOI:10.1038/nature17981
摘要

Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼鱼发布了新的文献求助10
3秒前
易俊完成签到 ,获得积分10
4秒前
5秒前
李爱国应助799采纳,获得10
7秒前
9秒前
11秒前
HarryQ完成签到,获得积分10
12秒前
卑微小松鼠完成签到,获得积分20
12秒前
DocZ完成签到,获得积分10
13秒前
13秒前
14秒前
try-agaaain完成签到 ,获得积分10
15秒前
15秒前
17秒前
颠颠的哦发布了新的文献求助10
17秒前
18秒前
lutiantian发布了新的文献求助10
18秒前
18秒前
鱼鱼完成签到,获得积分10
19秒前
消烦员发布了新的文献求助10
20秒前
799完成签到,获得积分10
20秒前
ding应助笏噜噜采纳,获得10
21秒前
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得30
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得30
22秒前
烟花应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
DocZ发布了新的文献求助10
22秒前
799发布了新的文献求助10
23秒前
你好发布了新的文献求助10
29秒前
大个应助明亮无颜采纳,获得10
30秒前
littlered发布了新的文献求助10
30秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422629
求助须知:如何正确求助?哪些是违规求助? 2111780
关于积分的说明 5346658
捐赠科研通 1839225
什么是DOI,文献DOI怎么找? 915590
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489710