General, Efficient, and Real-Time Data Compaction Strategy for APT Forensic Analysis

计算机科学 架空(工程) 计算机安全 数据挖掘 分布式计算 操作系统
作者
Tiantian Zhu,Jiayu Wang,Linqi Ruan,Chunlin Xiong,Jinkai Yu,Yaosheng Li,Yan Chen,Mingqi Lv,Tieming Chen
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 3312-3325 被引量:23
标识
DOI:10.1109/tifs.2021.3076288
摘要

The damage caused by Advanced Persistent Threat (APT) attacks to governments and large enterprises is gradually escalating. Once an attack event is detected, forensic analysis will use the dependencies between system audit logs to rapidly locate intrusion points and determine the impact of the attacks. Due to the high persistence of APT attacks, huge amounts of data will be stored to meet the needs of forensic analysis, which not only brings great storage overhead, but also sharply increases the computing costs. To compact data without affecting forensic analysis, several methods have been proposed. However, in real-world scenarios, we meet the problems of weak cross-platform capability, large data processing overhead, and poor real-time performance, rendering existing data compaction methods difficult to meet the usability and universality requirements jointly. To overcome these difficulties, this paper proposes a general, efficient, and real-time data compaction method at the system log level; it does not involve internal analysis of the program or depend on the specific operating system type, and it includes two strategies: 1) data compaction of maintaining global semantics (GS), which determines and deletes redundant events that do not affect global dependencies, and 2) data compaction based on suspicious semantics (SS). Given that the purpose of forensic analysis is to restore the attack chain, SS performs context analysis on the remaining events from GS and further deletes the parts that are not related to the attack. The results of the real-world experiments show that the compaction ratios of our method to system events are as high as $4.36\times $ to $13.18\times $ and $7.86\times $ to $26.99\times $ on GS and SS, respectively, which is better than state-of-the-art studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒸蒸日上发布了新的文献求助30
1秒前
你好发布了新的文献求助10
1秒前
sure完成签到 ,获得积分10
3秒前
瑞曦发布了新的文献求助10
3秒前
6秒前
畅快的蛋挞完成签到,获得积分10
7秒前
HU完成签到 ,获得积分10
7秒前
sure完成签到 ,获得积分10
9秒前
9秒前
蒸蒸日上完成签到,获得积分10
10秒前
七月江城发布了新的文献求助10
10秒前
10秒前
张欣童666发布了新的文献求助10
14秒前
15秒前
斯文败类应助三雨采纳,获得10
16秒前
英姑应助Return采纳,获得10
16秒前
不摇头的向日葵完成签到,获得积分10
18秒前
翻斗花园612完成签到,获得积分10
18秒前
zhanghhsnow发布了新的文献求助20
19秒前
dfghjkl完成签到 ,获得积分10
20秒前
21秒前
kalani完成签到,获得积分10
24秒前
隐形曼青应助务实青筠采纳,获得10
24秒前
25秒前
苏卿发布了新的文献求助10
25秒前
安东尼发布了新的文献求助10
26秒前
科研白白完成签到,获得积分10
27秒前
29秒前
poison发布了新的文献求助10
30秒前
30秒前
伊一完成签到,获得积分10
31秒前
无私水卉完成签到,获得积分10
34秒前
dfghjkl发布了新的文献求助10
34秒前
kk完成签到 ,获得积分10
34秒前
Return发布了新的文献求助10
35秒前
35秒前
36秒前
科研通AI5应助瘦瘦的斑马采纳,获得10
38秒前
39秒前
华仔应助poison采纳,获得10
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451