已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides

兴奋剂 材料科学 悬空债券 半导体 凝聚态物理 空位缺陷 带隙 基质(水族馆) 纳米技术 光电子学 Atom(片上系统) 化学物理 化学 物理 计算机科学 海洋学 地质学 嵌入式系统
作者
Xiankun Zhang,Li Gao,Huihui Yu,Qingliang Liao,Zhuo Kang,Zheng Zhang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (8): 655-668 被引量:31
标识
DOI:10.1021/accountsmr.1c00097
摘要

ConspectusFaced with the growing quests of higher-performance chips, developing new channel semiconductors immune to short channel effects has become a realistic option for continuing Moore’s Law. With outstanding gate electrostatic capacitance, stable chemical properties, and suitable bandgap, two-dimensional (2D) transition metal dichalcogenides (TMDCs) are considered as potential candidates for next-generation channel materials. However, the practical applications of 2D TMDCs are severely limited by stable, precise, and controllable doping technologies, due to their ultrathin body and dangling bond-free surface. Compared to three-dimensional semiconductors, donors in 2D semiconductors need larger ionization energy which can be attributed to the reduced screening of Coulomb interaction and the larger bandgap induced by quantum confinement. Limited by the ultrathin body of 2D TMDCs and the strong film–substrate charge transfer, typical silicon-based substitutional doping technology encounters some headache difficulties in 2D TMDCs and hardly achieves high-concentration doping. The other two doping technologies also cannot take on this task either; local gate electrostatic doping cannot leave the aid of the external electric field. And surface charge transfer doping of molecule adsorbents behaves unstably (e.g., thermal desorption) or ineffectively modifies the original electronic structure. Fortunately, single-atom vacancies can effectively and precisely adjust the carrier concentration of 2D TMDCs and significantly enhance their conductivity. Therefore, clarifying the work rules and function mechanism of single-atom vacancy doping in 2D TMDCs is beneficial in creating a brand-new optimization strategy of electrical properties and overcoming the technical obstacles of the “lab-to-fab” transition for their practical applications in high-performance electronics and optoelectronics.In this Account, we summarize the state-of-the-art progress in single-atom vacancy doping in 2D TMDCs and highlight the applications in optoelectronic and electronic devices. First, the common defects and the density-largest-defect type in 2D TMDCs are demonstrated through experimental characterizations. Second, the healing and manufacturing strategies of chalcogen vacancies in 2D TMDCs are systematically summarized. Third, we clarify the doping mechanism of single-atom vacancies in 2D TMDCs and its regulation of the electrical properties including carrier concentration and carrier mobility. Fourth, the correlations between chalcogen vacancies in 2D TMDCs and the optical signals from Raman and photoluminescence spectroscopies are established, which will help to quickly and nondestructively evaluate the chalcogen vacancy concentration. Fifth, the current applications of single-atom vacancy doping of 2D TMDCs materials are reviewed, including complementary metal–oxide semiconductor (CMOS) logic inverters, homojunctions, Schottky diodes, and photovoltaic devices. Finally, the potential challenges and future development trends of single-atom vacancy doping for next-generation electronic and optoelectronic devices are pointed out. Overall, this Account guides on controllable and precise doping technologies for researchers in these fields from materials, electronics, and optoelectronics to promote the practical applications of 2D TMDCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jiaowen发布了新的文献求助20
2秒前
3秒前
linfordlu完成签到,获得积分10
4秒前
5秒前
9秒前
Xuezhuoxin发布了新的文献求助10
9秒前
想吃鸡公煲完成签到,获得积分10
9秒前
10秒前
10秒前
科目三应助XueSU采纳,获得10
13秒前
Janx发布了新的文献求助10
14秒前
向觅夏发布了新的文献求助10
15秒前
外向不愁完成签到,获得积分20
16秒前
17秒前
18秒前
我爱蓝天大海完成签到 ,获得积分10
19秒前
起高楼楼塌了完成签到,获得积分10
21秒前
Janx完成签到,获得积分10
21秒前
22秒前
23秒前
AKKKK发布了新的文献求助10
24秒前
向觅夏完成签到,获得积分10
24秒前
Fisher完成签到 ,获得积分10
25秒前
Xuuuurj发布了新的文献求助10
27秒前
yitingmuyu发布了新的文献求助20
30秒前
万能图书馆应助AKKKK采纳,获得10
30秒前
31秒前
王火火发布了新的文献求助10
35秒前
亚楠完成签到,获得积分10
35秒前
36秒前
37秒前
无花果应助Jiaowen采纳,获得10
40秒前
kexiya完成签到 ,获得积分10
43秒前
44秒前
yanhan2009完成签到 ,获得积分10
45秒前
Jasper应助Xuuuurj采纳,获得10
47秒前
英俊的铭应助王火火采纳,获得10
48秒前
哥不吃香菜完成签到,获得积分10
48秒前
天天快乐应助哈哈采纳,获得10
52秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2400070
求助须知:如何正确求助?哪些是违规求助? 2100772
关于积分的说明 5296409
捐赠科研通 1828480
什么是DOI,文献DOI怎么找? 911334
版权声明 560198
科研通“疑难数据库(出版商)”最低求助积分说明 487125