Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA

卷积神经网络 分割 接收机工作特性 假阳性悖论 人工智能 医学 相关系数 放射科 Sørensen–骰子系数 计算机科学 图像分割 模式识别(心理学) 核医学 机器学习
作者
Xinke Liu,Junqiang Feng,Zhenhua Wu,Zhonghao Neo,Chengcheng Zhu,Peifang Zhang,Yan Wang,Yuhua Jiang,Dimitrios Mitsouras,Youxiang Li
出处
期刊:Interventional Neuroradiology [SAGE Publishing]
卷期号:27 (5): 648-657 被引量:18
标识
DOI:10.1177/15910199211000956
摘要

Accurate diagnosis and measurement of intracranial aneurysms are challenging. This study aimed to develop a 3D convolutional neural network (CNN) model to detect and segment intracranial aneurysms (IA) on 3D rotational DSA (3D-RA) images.3D-RA images were collected and annotated by 5 neuroradiologists. The annotated images were then divided into three datasets: training, validation, and test. A 3D Dense-UNet-like CNN (3D-Dense-UNet) segmentation algorithm was constructed and trained using the training dataset. Diagnostic performance to detect aneurysms and segmentation accuracy was assessed for the final model on the test dataset using the free-response receiver operating characteristic (FROC). Finally, the CNN-inferred maximum diameter was compared against expert measurements by Pearson's correlation and Bland-Altman limits of agreement (LOA).A total of 451 patients with 3D-RA images were split into n = 347/41/63 training/validation/test datasets, respectively. For aneurysm detection, observed FROC analysis showed that the model managed to attain a sensitivity of 0.710 at 0.159 false positives (FP)/case, and 0.986 at 1.49 FP/case. The proposed method had good agreement with reference manual aneurysmal maximum diameter measurements (8.3 ± 4.3 mm vs. 7.8 ± 4.8 mm), with a correlation coefficient r = 0.77, small bias of 0.24 mm, and LOA of -6.2 to 5.71 mm. 37.0% and 77% of diameter measurements were within ±1 mm and ±2.5 mm of expert measurements.A 3D-Dense-UNet model can detect and segment aneurysms with relatively high accuracy using 3D-RA images. The automatically measured maximum diameter has potential clinical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助科研鑫采纳,获得10
1秒前
lll完成签到 ,获得积分10
1秒前
科研通AI5应助Tomsen采纳,获得10
3秒前
3秒前
张渔歌完成签到,获得积分10
3秒前
大胆笑翠完成签到,获得积分10
4秒前
优秀傲松完成签到,获得积分10
4秒前
深情白风完成签到 ,获得积分10
4秒前
橘子的哈哈怪完成签到,获得积分10
5秒前
山丘完成签到,获得积分10
5秒前
小茵茵完成签到,获得积分10
5秒前
点墨完成签到 ,获得积分10
5秒前
6秒前
123完成签到,获得积分20
8秒前
SciGPT应助苹果骑士采纳,获得10
8秒前
细心的小懒虫完成签到,获得积分10
9秒前
凌志发布了新的文献求助10
9秒前
轻狂书生完成签到,获得积分10
9秒前
LIKE完成签到,获得积分10
9秒前
花海完成签到,获得积分10
9秒前
认真夜云完成签到,获得积分10
10秒前
忐忑的邑完成签到,获得积分10
10秒前
ZhaoCun完成签到,获得积分10
11秒前
大个应助上杉绘梨衣采纳,获得10
12秒前
wbb完成签到 ,获得积分10
12秒前
12秒前
12秒前
Bing发布了新的文献求助10
13秒前
安琪发布了新的文献求助10
13秒前
13秒前
LTDs完成签到,获得积分10
13秒前
king完成签到,获得积分10
13秒前
ccc完成签到,获得积分10
14秒前
YMH完成签到,获得积分10
16秒前
勤恳怀梦完成签到,获得积分10
16秒前
老四完成签到,获得积分0
16秒前
XpenG完成签到,获得积分10
16秒前
wp048006完成签到,获得积分10
16秒前
犬狗狗发布了新的文献求助10
16秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830625
求助须知:如何正确求助?哪些是违规求助? 3372936
关于积分的说明 10476177
捐赠科研通 3092895
什么是DOI,文献DOI怎么找? 1702300
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153