DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices

漆酶 儿茶酚 对苯二酚 化学 生物传感器 鸟嘌呤 组合化学 纳米花 材料科学 催化作用 纳米技术 有机化学 生物化学 核苷酸 基因
作者
Tai Duc Tran,Phuong Thy Nguyen,Thao Nguyen Le,Moon Il Kim
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:182: 113187-113187 被引量:77
标识
DOI:10.1016/j.bios.2021.113187
摘要

Laccases are important multicopper oxidases that are involved in many biotechnological processes; however, they suffer from poor stability as well as high cost for production/purification. Herein, we found that DNA-copper hybrid nanoflowers, prepared via simple self-assembly of DNA and copper ions, exhibit an intrinsic laccase-mimicking activity, which is significantly higher than that of control materials formed in the absence of DNA. Upon testing all four nucleobases, we found that hybrid nanoflowers composed of guanine-rich ssDNA and copper phosphate (GNFs) showed the highest catalytic activity, presumably due to the affirmative coordination between guanine and copper ions. At the same mass concentration, GNFs had similar Km but 3.5-fold higher Vmax compared with those of free laccase, and furthermore, they exhibited significantly-enhanced stability in ranges of pH, temperature, ionic strength, and incubation period of time. Based on these advantageous features, GNFs were applied to paper microfluidic devices for colorimetric detection of diverse phenolic compounds such as dopamine, catechol, and hydroquinone. In the presence of phenolic compounds, GNFs catalyzed their oxidation to react with 4-aminoantipyrine for producing a colored adduct, which was conveniently quantified from an image acquired using a conventional smartphone with ImageJ software. Besides, GNFs successfully catalyzed the decolorization of neutral red dye much faster than free laccase. This work will facilitate the development of nanoflower-type nanozymes for a wide range of applications in biosensors and bioremediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈喽哇完成签到,获得积分10
1秒前
KYT2022qqXiXi完成签到,获得积分10
1秒前
ehhh发布了新的文献求助10
1秒前
彭于晏应助hwezhu采纳,获得10
2秒前
隐形的笑槐完成签到,获得积分10
2秒前
2秒前
青心金梅完成签到,获得积分10
2秒前
Liu完成签到,获得积分10
3秒前
vovoking完成签到 ,获得积分10
4秒前
hyw完成签到 ,获得积分10
4秒前
刻苦秋烟发布了新的文献求助10
4秒前
单薄碧灵完成签到 ,获得积分10
4秒前
shijiaomu完成签到 ,获得积分10
5秒前
AlinaG应助背后书雪采纳,获得10
5秒前
今后应助土豪的雅柔采纳,获得10
5秒前
哈喽哇发布了新的文献求助10
5秒前
666完成签到,获得积分10
6秒前
菜籽发布了新的文献求助10
6秒前
安详可燕发布了新的文献求助10
7秒前
7秒前
7秒前
jasmine完成签到,获得积分10
8秒前
所所应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
XIE完成签到,获得积分20
9秒前
Akim应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Ellctoy应助科研通管家采纳,获得10
9秒前
旺王小小酥完成签到 ,获得积分10
9秒前
Leonardi应助科研通管家采纳,获得20
9秒前
东郭雁梅完成签到 ,获得积分10
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助标致的方盒采纳,获得10
9秒前
10秒前
11秒前
eric完成签到,获得积分10
11秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2413555
求助须知:如何正确求助?哪些是违规求助? 2107300
关于积分的说明 5326358
捐赠科研通 1834675
什么是DOI,文献DOI怎么找? 914150
版权声明 560992
科研通“疑难数据库(出版商)”最低求助积分说明 488825