Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification

计算机科学 特征学习 上下文图像分类 人工智能 判别式 分类器(UML) 模式识别(心理学) 监督学习 特征向量 嵌入 线性分类器 图像(数学) 交叉熵 机器学习 人工神经网络
作者
Peng Wang,Kai Han,Xiu-Shen Wei,Lei Zhang,Lei Wang
标识
DOI:10.1109/cvpr46437.2021.00100
摘要

Learning discriminative image representations plays a vital role in long-tailed image classification because it can ease the classifier learning in imbalanced cases. Given the promising performance contrastive learning has shown recently in representation learning, in this work, we explore effective supervised contrastive learning strategies and tailor them to learn better image representations from imbalanced data in order to boost the classification accuracy thereon. Specifically, we propose a novel hybrid network structure being composed of a supervised contrastive loss to learn image representations and a cross-entropy loss to learn classifiers, where the learning is progressively transited from feature learning to the classifier learning to embody the idea that better features make better classifiers. We explore two variants of contrastive loss for feature learning, which vary in the forms but share a common idea of pulling the samples from the same class together in the normalized embedding space and pushing the samples from different classes apart. One of them is the recently proposed supervised contrastive (SC) loss, which is designed on top of the state-of-the-art unsupervised contrastive loss by incorporating positive samples from the same class. The other is a prototypical supervised contrastive (PSC) learning strategy which addresses the intensive memory consumption in standard SC loss and thus shows more promise under limited memory budget. Extensive experiments on three long-tailed classification datasets demonstrate the advantage of the proposed contrastive learning based hybrid networks in long-tailed classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助刻苦冷菱采纳,获得10
2秒前
鸣笛应助刻苦冷菱采纳,获得10
2秒前
鸣笛应助刻苦冷菱采纳,获得10
2秒前
杨。。完成签到 ,获得积分10
3秒前
Qintt完成签到 ,获得积分10
4秒前
6秒前
yzy完成签到,获得积分10
8秒前
10秒前
ws_WS_发布了新的文献求助200
10秒前
11秒前
11秒前
活泼彩虹发布了新的文献求助10
11秒前
11秒前
丘比特应助达到采纳,获得10
12秒前
xaogny发布了新的文献求助10
13秒前
jasper完成签到,获得积分10
13秒前
ARESCI发布了新的文献求助10
14秒前
AmyHu完成签到,获得积分10
14秒前
Dobby完成签到,获得积分10
15秒前
16秒前
mj完成签到,获得积分10
17秒前
Liu完成签到 ,获得积分10
17秒前
smile完成签到,获得积分10
17秒前
18秒前
韩立发布了新的文献求助10
18秒前
情怀应助遇见馅儿饼采纳,获得10
19秒前
打卡下班应助xaogny采纳,获得10
20秒前
浮熙完成签到 ,获得积分10
21秒前
Fang Xianxin发布了新的文献求助10
21秒前
21秒前
SSNN完成签到,获得积分10
22秒前
23秒前
斯文败类应助ARESCI采纳,获得10
23秒前
昭玥完成签到,获得积分10
24秒前
艾泽拉斯的囚徒完成签到,获得积分10
24秒前
韩立完成签到,获得积分10
25秒前
28秒前
123完成签到 ,获得积分10
28秒前
tingalan完成签到,获得积分10
29秒前
可可可爱完成签到 ,获得积分10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087180
求助须知:如何正确求助?哪些是违规求助? 3626076
关于积分的说明 11498407
捐赠科研通 3339255
什么是DOI,文献DOI怎么找? 1835835
邀请新用户注册赠送积分活动 904038
科研通“疑难数据库(出版商)”最低求助积分说明 822044