FedGraph: Federated Graph Learning With Intelligent Sampling

计算机科学 试验台 图形 人工智能 强化学习 卷积神经网络 机器学习 深度学习 理论计算机科学 信息隐私 分布式计算 计算机网络 计算机安全
作者
Fahao Chen,Peng Li,Toshiaki Miyazaki,Celimuge Wu
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 1775-1786 被引量:58
标识
DOI:10.1109/tpds.2021.3125565
摘要

Federated learning has attracted much research attention due to its privacy protection in distributed machine learning. However, existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle graph data that are popular in many applications. Graph Convolutional Network (GCN) has been proposed as one of the most promising techniques for graph learning, but its federated setting has been seldom explored. In this article, we propose FedGraph for federated graph learning among multiple computing clients, each of which holds a subgraph. FedGraph provides strong graph learning capability across clients by addressing two unique challenges. First, traditional GCN training needs feature data sharing among clients, leading to risk of privacy leakage. FedGraph solves this issue using a novel cross-client convolution operation. The second challenge is high GCN training overhead incurred by large graph size. We propose an intelligent graph sampling algorithm based on deep reinforcement learning, which can automatically converge to the optimal sampling policies that balance training speed and accuracy. We implement FedGraph based on PyTorch and deploy it on a testbed for performance evaluation. The experimental results of four popular datasets demonstrate that FedGraph significantly outperforms existing work by enabling faster convergence to higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kindy完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
友好的天奇完成签到,获得积分10
3秒前
星辰大海应助哈喽小雪采纳,获得10
4秒前
bkagyin应助默然回首采纳,获得10
4秒前
十八完成签到,获得积分10
5秒前
hehehe发布了新的文献求助10
6秒前
6秒前
ZQ完成签到,获得积分10
6秒前
默默山槐关注了科研通微信公众号
7秒前
科研通AI2S应助夷灭采纳,获得10
9秒前
9秒前
11秒前
科研通AI5应助小龙采纳,获得10
12秒前
muyuchengf完成签到,获得积分20
12秒前
13秒前
14秒前
14秒前
28316818@qq.com完成签到,获得积分10
14秒前
16秒前
哈喽小雪发布了新的文献求助10
17秒前
真凉大魔王完成签到,获得积分20
17秒前
17秒前
18秒前
Shennian发布了新的文献求助10
18秒前
科研通AI2S应助Selina采纳,获得10
20秒前
科研通AI5应助可爱非笑采纳,获得10
21秒前
长生发布了新的文献求助10
22秒前
FashionBoy应助hexinyu采纳,获得10
22秒前
hehehe完成签到,获得积分10
23秒前
muyuchengf关注了科研通微信公众号
24秒前
默默山槐发布了新的文献求助10
25秒前
西兰花完成签到,获得积分10
26秒前
天天快乐应助十八采纳,获得10
27秒前
27秒前
30秒前
时尚战斗机完成签到,获得积分10
31秒前
可爱非笑完成签到,获得积分20
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010