Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning

组分(热力学) 计算机科学 原油 贝叶斯概率 贝叶斯推理 分解 任务(项目管理) 系列(地层学) 随机森林 人工智能 模式(计算机接口) 主成分分析 概率预测 计量经济学 机器学习 数学 工程类 概率逻辑 石油工程 物理 操作系统 古生物学 热力学 生物 系统工程 生态学
作者
Taiyong Li,Zijie Qian,Wu Deng,Duzhong Zhang,LU Huihui,Shuheng Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:113: 108032-108032 被引量:95
标识
DOI:10.1016/j.asoc.2021.108032
摘要

Abstract Accurately forecasting crude oil prices has drawn much attention from researchers, investors, producers, and consumers. However, the complexity of crude oil prices makes it a very challenging task. To this end, this paper presents a novel scheme by integrating variational mode decomposition (VMD) and random sparse Bayesian learning (RSBL, SBL-based prediction with random lags and random samples), namely VMD-RSBL, for the forecasting task. The proposed VMD-RSBL contains three stages. First, crude oil price series is decomposed into a couple of components by VMD. The decomposed components exhibit simpler characteristics than the raw prices and hence are easy to forecast. Second, RSBL is employed to predict each component individually. Specifically, for each component, the proposed scheme builds a group of predictors with SBL on different subsets of samples (random samples) and random lags, and then the average of all the predictors is taken as the forecasting result of the individual component. At last, the forecasting results of all the components are added as the final forecasting prices. We perform extensive experiments, and the results demonstrate that the proposed VMD-RSBL significantly outperforms many state-of-the-art schemes in terms of several evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助房房房破防啦采纳,获得10
1秒前
斯文败类应助氟锑酸采纳,获得10
4秒前
阿梨完成签到 ,获得积分10
4秒前
香蕉觅云应助阿星捌采纳,获得10
5秒前
di发布了新的文献求助30
5秒前
fuje发布了新的文献求助300
6秒前
8秒前
小小博应助zmc采纳,获得20
10秒前
无言完成签到,获得积分20
10秒前
xunxunmimi应助wonwojo采纳,获得50
12秒前
灵巧梦菲完成签到,获得积分10
12秒前
13秒前
wen完成签到,获得积分10
13秒前
13秒前
13秒前
许红完成签到,获得积分10
14秒前
14秒前
魔幻毛豆发布了新的文献求助10
14秒前
14秒前
hyw010724发布了新的文献求助10
16秒前
gan完成签到,获得积分10
17秒前
qiyun发布了新的文献求助10
18秒前
20秒前
氟锑酸发布了新的文献求助10
20秒前
可爱的函函应助Dr_Zhang采纳,获得10
20秒前
982289172完成签到,获得积分10
20秒前
活力的镜子完成签到,获得积分10
21秒前
Orange应助Wei采纳,获得10
22秒前
光锥之外发布了新的文献求助10
23秒前
脑洞疼应助钙离子采纳,获得10
23秒前
NATURECATCHER完成签到,获得积分10
28秒前
Percy完成签到 ,获得积分10
28秒前
hyw010724完成签到,获得积分10
29秒前
32秒前
小林子完成签到,获得积分10
34秒前
35秒前
钙离子发布了新的文献求助10
37秒前
38秒前
想上985完成签到,获得积分10
38秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3943002
求助须知:如何正确求助?哪些是违规求助? 3487999
关于积分的说明 11046717
捐赠科研通 3218661
什么是DOI,文献DOI怎么找? 1779073
邀请新用户注册赠送积分活动 864519
科研通“疑难数据库(出版商)”最低求助积分说明 799560