Performance evaluation of PV-TEC coupling device for power production with improved hybrid nanocarbon based thermal material interface

技术 热电冷却 材料科学 光伏系统 热阻 热的 热电效应 工艺工程 光电子学 电气工程 气象学 热力学 工程类 天文 电离层 物理
作者
Abhay Vijay Kotkondawar,Ankit Bhende,Vivek Khond,Sadhana Rayalu
出处
期刊:Energy Reports [Elsevier BV]
卷期号:7: 6868-6875 被引量:10
标识
DOI:10.1016/j.egyr.2021.09.110
摘要

The waste heat harnessing from photovoltaic module (PV) with the thermoelectric device (TE) is considered as an ideal solution for effective thermal management of PV technologies. However, idealized operating conditions for lossless device coupling and reduction in thermal contact resistance need to be investigated further to expedite PV-TE device efficiency. Our simple approach to tandemly attach a low-cost thermoelectric cooling device (TEC) to PV module has improved its power output and electrical efficiency by 1.02% and 1.1% respectively (No. of TEC device-1, 720 W/m2 and 20 °C of water-cooling). Herein, we explored the TEC device for power production as a cost-effective alternative to the traditional thermoelectric (TEG) devices. To facilitates the facile heat transport among the PV-TEC interface, the thermal interface material (TIM) has been applied on TEC devices. The hybridized paste of nanocarbon and thermal grease (NC-TG) was used as a TIM material, morphologically evident the linear alignment between NC in TG matrix has ameliorated the uniform heat conduction. It was observed that the application of hybrid Carbon TIM materials enhances the power generation by 10.65% compared to PV-TG-TEC. The physicochemical analysis and evaluation results indicated that the low-cost synthesized hybrid carbon-based TIM material is efficient in the reduction of thermal contact resistance. Concomitantly, the high heat absorption capacity of nanocarbon accelerated the TEC performance by creating a sufficient temperature gradient across TEC ends. The present work proposed a simple and low-cost pathway for the improvement of TEC performance using hybrid carbon-based TIM material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的寄灵完成签到,获得积分10
1秒前
水博士完成签到,获得积分10
1秒前
务实雁梅完成签到,获得积分10
5秒前
Likz完成签到,获得积分10
8秒前
yt完成签到,获得积分10
9秒前
smin完成签到,获得积分10
11秒前
心灵美莺完成签到 ,获得积分20
12秒前
jun完成签到,获得积分10
12秒前
liyiren完成签到,获得积分10
13秒前
lost发布了新的文献求助10
14秒前
兴奋小丸子完成签到,获得积分10
14秒前
代扁扁完成签到 ,获得积分10
15秒前
sarah完成签到,获得积分10
15秒前
Danish完成签到,获得积分10
15秒前
15秒前
祭途完成签到,获得积分10
16秒前
wuludie应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
wuludie应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
Li应助科研通管家采纳,获得50
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
冲冲冲完成签到,获得积分10
18秒前
zhong完成签到,获得积分10
18秒前
豪豪完成签到,获得积分10
19秒前
Crisp完成签到,获得积分10
19秒前
科研通AI5应助你再说一遍采纳,获得10
19秒前
Jackcaosky完成签到 ,获得积分10
19秒前
文静灵阳完成签到 ,获得积分10
19秒前
yirenli完成签到,获得积分10
20秒前
蓝橙完成签到,获得积分10
20秒前
lrl99发布了新的文献求助10
20秒前
22秒前
美好灵寒完成签到 ,获得积分10
22秒前
稳重的无色完成签到,获得积分10
22秒前
捉一只小鱼完成签到 ,获得积分10
23秒前
23秒前
223311完成签到,获得积分10
24秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379425
捐赠科研通 3073158
什么是DOI,文献DOI怎么找? 1688205
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893