Striatal Subdivisions Estimated via Deep Embedded Clustering With Application to Parkinson's Disease

帕金森病 纹状体 聚类分析 计算机科学 神经影像学 人工智能 静息状态功能磁共振成像 心理学 主成分分析 医学 模式识别(心理学) 神经科学 疾病 病理 多巴胺
作者
Yu Li,Aiping Liu,Taomian Mi,Runyu Yang,Piu Chan,Martin J. McKeown,Xun Chen,Feng Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3564-3575 被引量:10
标识
DOI:10.1109/jbhi.2021.3083879
摘要

Recent fMRI connectivity-based parcellation (CBP) methods have been developed to obtain homogeneous and functionally coherent brain parcels. However, most of these studies utilize traditional clustering methods that neglect hidden nonlinear features. To enhance parcellation performance, here we propose a deep embedded connectivity-based parcellation (DECBP) framework and apply it to determine functional subdivisions of the striatum in public resting state fMRI data sets. This framework integrates fMRI connectivity features into deep embedded clustering (DEC), a deep neural network based on a stacked autoencoder. Compared to three prevalent clustering methods and their combinations with principal component analysis (PCA), the DECBP exhibited a significantly higher similarity between scans, individuals, and groups, indicating enhanced reproducibility. The generated reliable parcellations were also largely consistent with other public atlases. We further explored the functional subunits in the striatum in a data set from 23 Parkinson's disease (PD) subjects and 27 age-matched healthy controls (HC). All putaminal subregions of PD demonstrated lower interhemispheric connectivity than those of HC, which might reflect imbalance in the pathological progression of PD. Such hypo-connectivity was also observed between putaminal subregions and other brain regions, reflecting neuroimaging manifestations of the altered cortico-striato-thalamo-cortical circuit. These observed weaker couplings were associated with PD severity and duration. Our results support the utilization of the DECBP framework and suggest that abnormal connectivity in putaminal subregions may be a potential indicator of PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁发布了新的文献求助20
1秒前
852应助幽默数据线采纳,获得10
2秒前
2秒前
科研通AI5应助热心萤采纳,获得30
2秒前
吴彦祖完成签到,获得积分10
3秒前
6秒前
李安全发布了新的文献求助10
7秒前
斯文远望发布了新的文献求助10
7秒前
传奇3应助lx采纳,获得10
9秒前
9秒前
12秒前
风华正茂发布了新的文献求助10
12秒前
知常发布了新的文献求助10
13秒前
FashionBoy应助jikang采纳,获得10
13秒前
孙佳婷完成签到 ,获得积分20
14秒前
yy完成签到,获得积分10
14秒前
15秒前
五档张诊人完成签到 ,获得积分10
16秒前
couletian完成签到 ,获得积分10
17秒前
17秒前
Singularity应助boshi采纳,获得10
18秒前
知常完成签到,获得积分10
18秒前
假面绅士发布了新的文献求助10
20秒前
21秒前
25秒前
25秒前
26秒前
pluto应助boshi采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
斯文远望完成签到,获得积分10
30秒前
tao发布了新的文献求助10
30秒前
傅凡桃发布了新的文献求助10
30秒前
无言完成签到,获得积分10
32秒前
泡沫完成签到,获得积分10
33秒前
35秒前
36秒前
无言发布了新的文献求助30
36秒前
pluto应助boshi采纳,获得10
36秒前
乐乐应助美丽的若云采纳,获得10
37秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881284
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735602
捐赠科研通 3148665
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087