Performance prediction strengths of noun and verb phrases in L2 writing: Comparison of density and complexity variables

名词短语 动词短语 短语 动词短语省略 限定词短语 判决 名词 语言学 名词化 动词 数学 计算机科学 人工智能 自然语言处理 哲学
作者
Kutay Uzun
出处
期刊:Assessing Writing [Elsevier BV]
卷期号:50: 100572-100572 被引量:3
标识
DOI:10.1016/j.asw.2021.100572
摘要

This study aimed to compare different noun and verb phrase density and complexity variables regarding if and how strongly they could predict L2 writing performance. 183 short literary analysis essays with analytically-obtained scores, written in an English as a Foreign Language context, were used as the corpus of the study. The scores were divided as low, mediocre and high scores by K-means cluster analysis. Separate regression models were built for each group using Complex Nominal per T-unit, Complex Nominal per Clause, Noun Phrase per Sentence, Noun Phrase per 1000 Words, Verb Phrase per T-unit, Verb Phrase per Sentence and Verb Phrase per 1000 Word as predictor variables. A multivariate model of noun phrase complexity was also tested. The results showed that Complex Nominal per T-unit was the strongest predictor of high performance. Verb Phrase per 1000 Words was the only significant verb phrase-based (negative) predictor of high performance. Mediocre performance could only be predicted by Complex Nominal per Clause. Low performance could not be predicted by any of the noun or verb phrase-based variables. The results confirm that noun phrase complexity develops across performance levels; however, more traditional (length based) complexity indices may be more useful to explain low performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助WFLLL采纳,获得10
2秒前
2秒前
2秒前
阿浮发布了新的文献求助10
3秒前
111111发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
111111完成签到,获得积分10
14秒前
俊逸凌雪发布了新的文献求助10
14秒前
17秒前
科研小菜鸡完成签到,获得积分20
19秒前
orixero应助CH采纳,获得10
22秒前
聪慧的伟发布了新的文献求助10
22秒前
23秒前
24秒前
chen完成签到,获得积分10
25秒前
隐形曼青应助lx采纳,获得10
25秒前
27秒前
WFLLL发布了新的文献求助10
28秒前
29秒前
聪慧的伟完成签到,获得积分10
29秒前
在水一方应助俊逸凌雪采纳,获得10
30秒前
科目三应助hans采纳,获得10
33秒前
CH发布了新的文献求助10
33秒前
34秒前
36秒前
狂野的研究僧完成签到,获得积分10
37秒前
lx发布了新的文献求助10
39秒前
赘婿应助CH采纳,获得10
41秒前
melody发布了新的文献求助10
42秒前
哇咔咔完成签到 ,获得积分10
45秒前
Hello应助狂野的研究僧采纳,获得10
46秒前
bkagyin应助Memory采纳,获得10
47秒前
ziji完成签到,获得积分10
48秒前
50秒前
mia005发布了新的文献求助30
51秒前
lianlian完成签到,获得积分10
51秒前
52秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103