亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance

人工神经网络 人工智能 空气质量指数 机器学习 计算机科学 支持向量机 模糊逻辑 空气污染 一般化 数据挖掘 气象学 数学 数学分析 化学 物理 有机化学
作者
Adil Masood,Kafeel Ahmad
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:322: 129072-129072 被引量:211
标识
DOI:10.1016/j.jclepro.2021.129072
摘要

Accurate air quality forecasting is critical for systematic pollution control as well as public health and wellness. Most of the traditional forecasting techniques have shown inconsistent predictive accuracy due to the non-linear, dynamic and complex nature of air pollutants. In the past few years, artificial intelligence (AI)-based methods have become the most powerful and forward-looking approaches for air pollution forecasting because of their specific features such as organic learning, high precision, superior generalization, strong fault tolerance, and ease of working with high-dimensional data. This study presents a comprehensive overview of the most widely used AI-based techniques for air pollution forecasting namely Artificial Neural Networks (ANN), Deep Neural Network (DNN), Support vector machine (SVM) and Fuzzy logic through a systematic literature review (SLR). In total 90 papers were selected which were distributed between 2003 and 2021. The SLR aims to classify the literature on AI-based air pollution forecasting from various perspectives, such as input parameters, relative frequency of application of AI techniques, performance, year of publication, journal and geographic distribution and also addresses the corresponding research questions related to this domain. The results showed that the number of citations and publications have been increasing in recent years. The most frequently applied input parameter is the air quality and the best performing AI-based technique is the DNN. On the other hand, Fuzzy logic, DNN and SVM are the three commonly used AI-based techniques for air pollution forecasting. In addition, some technological gaps in the literature and the pros and cons associated with the different AI techniques, were identified and discussed. This review article shows that AI-based techniques have triggered a resurgence of interest in air pollution forecasting and offer great potential to fundamentally change the way air pollution is forecasted in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净博涛完成签到 ,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
15秒前
加缪应助科研通管家采纳,获得10
15秒前
melo完成签到,获得积分10
44秒前
打打应助cometx采纳,获得10
44秒前
55秒前
cometx发布了新的文献求助10
58秒前
1分钟前
zm完成签到 ,获得积分10
1分钟前
阿里发布了新的文献求助10
1分钟前
Gideon完成签到,获得积分10
2分钟前
青树柠檬完成签到 ,获得积分10
2分钟前
阿里完成签到,获得积分20
2分钟前
2分钟前
科研funs完成签到,获得积分10
2分钟前
科研funs发布了新的文献求助10
2分钟前
Perry完成签到,获得积分10
2分钟前
852应助cometx采纳,获得10
3分钟前
科研通AI2S应助秋日思语采纳,获得10
3分钟前
3分钟前
3分钟前
cometx发布了新的文献求助10
3分钟前
3分钟前
3分钟前
加菲丰丰应助sino-ft采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得150
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
阿里给阿里的求助进行了留言
4分钟前
4分钟前
科研通AI5应助追寻的摩托采纳,获得10
5分钟前
5分钟前
英姑应助feifei采纳,获得10
5分钟前
6分钟前
feifei发布了新的文献求助10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
feifei完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173791
求助须知:如何正确求助?哪些是违规求助? 4363475
关于积分的说明 13585551
捐赠科研通 4212065
什么是DOI,文献DOI怎么找? 2310173
邀请新用户注册赠送积分活动 1309240
关于科研通互助平台的介绍 1256655