Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics

偏最小二乘回归 化学计量学 化学 线性回归 食品科学 回归分析 近红外光谱 生咖啡 色谱法 分析化学(期刊) 生物系统 决定系数 主成分分析
作者
MengTing Zhu,You Long,Yi Chen,Yousheng Huang,Lijun Tang,Bei Gan,Qiang Yu,Jianhua Xie
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:102: 104055-104055 被引量:4
标识
DOI:10.1016/j.jfca.2021.104055
摘要

• NIR technique was used to determine lipid and protein content in green coffee beans. • Spectral pretreatment and variables selection was explored for model optimizing. • OSC-PLS models were the most robust for protein and lipid prediction. • This method is faster and easier than traditional methods. The chemical compounds including lipid and protein in green coffee beans are important indicators of the final quality of the coffee products, which are usually determined by time-consuming and destructive chemical methods. Therefore, a fast and reliable method was attempted to exploit by near-infrared (NIR) spectroscopy combined with partial least squares (PLS) regression for the determination of lipid and protein in green coffee beans from different origins. Orthogonal signal correction (OSC) and several traditional spectral pretreatment methods were compared during the PLS regression model building process. Important variables selection was further achieved based on the regression coefficients (β). The results showed that the 1 st and 2 nd derivative reduced the model quality, while OSC, MSC, and SNV pretreatment enhanced the model quality. The quality of PLS models was significantly improved after important variable selection. Especially, OSC-PLS models were the most robust for protein and lipid prediction with the best performance indicators (R 2 p>0.982, RPD > 7.55, RMSEcv <0.101, RMSEP < 0.106). The excellent performance showed that the NIR technique together with PLS regression could be applied as a substitute way to determine the protein and lipid content in green coffee beans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助拜拜拜采纳,获得10
1秒前
xun关闭了xun文献求助
1秒前
wxy完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
popooo完成签到,获得积分10
5秒前
爱听歌的大地完成签到 ,获得积分0
7秒前
小小完成签到,获得积分10
7秒前
慌慌张张的张张完成签到,获得积分20
7秒前
四羟基合铝酸钾完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
Tang完成签到,获得积分10
10秒前
11秒前
啦啦啦发布了新的文献求助10
12秒前
13秒前
15秒前
科研狗发布了新的文献求助10
15秒前
李健应助李好采纳,获得10
16秒前
拜拜拜发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
雪蛋儿完成签到 ,获得积分10
17秒前
19秒前
20秒前
科研通AI6应助灵感大王喵采纳,获得10
21秒前
Zn发布了新的文献求助30
21秒前
CodeCraft应助细心的恋风采纳,获得10
22秒前
寂寞的介茉完成签到,获得积分10
22秒前
xianyu发布了新的文献求助10
25秒前
25秒前
黄臻发布了新的文献求助10
26秒前
28秒前
bkagyin应助啦啦啦采纳,获得10
29秒前
gnufgg完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4637418
求助须知:如何正确求助?哪些是违规求助? 4031344
关于积分的说明 12472888
捐赠科研通 3718264
什么是DOI,文献DOI怎么找? 2052126
邀请新用户注册赠送积分活动 1083381
科研通“疑难数据库(出版商)”最低求助积分说明 965279