已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Charge-carrier dynamics for silicon oxide tunneling junctions mediated by local pinholes

材料科学 量子隧道 载流子 光电子学 动力学(音乐) 电荷(物理) 氧化物 纳米技术 化学物理 物理 量子力学 声学 冶金
作者
Zhenhai Yang,Zunke Liu,Mei Cui,Jiang Sheng,Li Chen,Linna Lu,Wei Guo,Xi Yang,Yunxing Zhao,Weichuang Yang,James C. Greer,Yuheng Zeng,Baojie Yan,Jichun Ye
出处
期刊:Cell reports physical science [Elsevier]
卷期号:2 (12): 100667-100667 被引量:29
标识
DOI:10.1016/j.xcrp.2021.100667
摘要

Tunnel oxide passivating contact (TOPCon) technology has attracted much attention in the crystalline silicon (c-Si) photovoltaic (PV) community due to overwhelming advantages for device efficiency and cost. However, fundamental device physics of the core structure of TOPCon (i.e., the polycrystalline silicon [poly-Si]/silicon oxide [SiO x ]/c-Si junction), are not yet fully understood. Here, we conduct extensive experiments and simulations to clarify the underlying dynamics of the junction featuring local pinholes, including pinhole formation processes and charge-carrier transport mechanisms. The pinhole formation process is investigated by following the film dynamics, which suggest that stress due to thermal expansion is probably responsible for SiO x film fracture. The carrier transport mechanism of the poly-Si/SiO x /Si junction is numerically investigated, revealing that tunneling charge-carrier transport couples with direct transport through pinholes. Moreover, a detailed current-recombination analysis in conjunction with predictions of device efficiencies is demonstrated, providing a specific technical route to promote device efficiencies to 27%. • Pinhole formation process is probed by thermal expansion model • Carrier transport through-tunneling and pinholes are theoretically confirmed • A systematic model to evaluate passivation and contact properties is established • The best devices show an average efficiency over 23.5% on the large-area wafers By combining experiments and simulations, Yang et al. reveal the formation process of pinholes and charge-carrier transport mechanisms of poly-Si/SiO x /c-Si contacts. This work may shed light on the underlying device physics of the poly-Si/SiO x /c-Si junctions and provides guidance on achieving high-efficiency TOPCon devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的飞阳完成签到 ,获得积分10
刚刚
大个应助carnationli采纳,获得10
2秒前
2秒前
3秒前
3秒前
颜南风完成签到 ,获得积分10
5秒前
李李完成签到,获得积分10
7秒前
明亮盼望发布了新的文献求助10
7秒前
10秒前
999完成签到 ,获得积分10
11秒前
酷波er应助流光之城采纳,获得10
12秒前
文艺烧鹅发布了新的文献求助10
12秒前
生物质炭发布了新的文献求助10
13秒前
13秒前
14秒前
Hello应助Li采纳,获得10
16秒前
carnationli发布了新的文献求助10
17秒前
糖醋里脊加醋完成签到 ,获得积分10
18秒前
彭于晏应助王帆采纳,获得10
21秒前
23秒前
24秒前
24秒前
27秒前
davedavedave完成签到 ,获得积分10
27秒前
Tina完成签到 ,获得积分10
27秒前
27秒前
28秒前
苹果大侠完成签到 ,获得积分10
28秒前
LB应助科研通管家采纳,获得30
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
GPTea应助科研通管家采纳,获得20
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
30秒前
黎云发布了新的文献求助10
30秒前
30秒前
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
LB应助科研通管家采纳,获得10
30秒前
Micheal完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275