后代
队列
人口学
队列研究
医学
前瞻性队列研究
辅助生殖技术
环境卫生
中国
怀孕
生殖健康
老年学
人口
不育
地理
生物
考古
社会学
病理
外科
内科学
遗传学
作者
Zhibin Hu,Jiancai Du,X. Xu,Yuan Lin,H X,Guangfu Jin,Raymond Li,Jun Yan,Z W Liu,Ge Lin,Canquan Zhou,Yankai Xia,Hongbing Shen
出处
期刊:PubMed
日期:2021-04-10
被引量:4
标识
DOI:10.3760/cma.j.cn112338-20201211-01402
摘要
With the rapid changes in lifestyle, natural and social environment, the reproductive health status of couples in childbearing age continues to decline, and long-term outcomes of the rapidly increasing offspring conceived by assisted reproductive technology (ART) needs to be evaluated urgently. Therefore, the focus of research now needs to be extended from death and severe diseases to full life cycle and full disease spectrum. In order to meet the demand for such research, we launched the China National Birth Cohort (CNBC) study, an ongoing prospective and longitudinal study aiming to recruit 30 000 families underwent ART and 30 000 families with spontaneous pregnancies. Long-term follow-up programs will be conducted for both spouses and their offspring. Data of couples and their offspring, such as environmental exposure, reproductive history, psychological and behavioral status, will be collected during follow-up. Peripheral blood, urine, umbilical blood, follicular fluid, semen were also collected at different follow-up nodes. Based on high-quality data and biological samples, CNBC will play an extremely important supporting role and have a far-reaching impact on maternal and children's health care and reproductive health in China. This paper is exactly a brief introduction to the construction and basic design of CNBC.随着生活行为方式、自然和社会环境的急剧变化,育龄人口生殖健康状况持续下降,快速增加的由辅助生殖技术(ART)孕育的子代的远期健康状况亟待评估。因此,妇幼保健和生殖健康相关研究关注的重点亟需从妊娠期、围产期的死亡和严重疾病表型逐渐向全生命周期和全疾病谱拓展。为了满足这样的研究需求,在我国12个省(自治区、直辖市)启动了中国国家出生队列(China National Birth Cohort)建设,计划以家庭为单位,招募3万个自然妊娠家庭和3万个ART家庭的人群,并对夫妻双方以及孕育的子代开展长期随访,收集夫妻和子代的环境暴露、生殖生育、精神心理、行为习惯等多方面暴露数据。同时采集外周血、尿液、脐血、卵泡液和精浆、精子等多种类型的生物样本。该出生队列对于我国妇幼健康和生殖医学研究具有极其重要支撑作用和深远影响。本文即是对国家出生队列的建设概况和基本设计做简要介绍。.
科研通智能强力驱动
Strongly Powered by AbleSci AI