Introduction to AI-Driven Innovations in Electrochemical Technologies

可解释性 计算机科学 可转让性 电化学储能 转化式学习 过程(计算) 数据科学 高效能源利用 大数据 可持续能源 纳米技术 系统工程 人工智能 风险分析(工程) 工程类 管理科学 能源消耗 钥匙(锁) 人工智能应用 能量(信号处理) 持续性 新兴技术 储能 生化工程
作者
Ashna Verma,N. L. Singh
出处
期刊:BENTHAM SCIENCE PUBLISHERS eBooks [BENTHAM SCIENCE PUBLISHERS]
卷期号:: 1-30
标识
DOI:10.2174/9798898811860125010005
摘要

Artificial Intelligence (AI) is revolutionizing electrochemical technologies, driving innovations in energy storage, conversion, and the discovery of advanced materials. This chapter delves into the transformative role of AI in the design, optimization, and enhancement of electrochemical systems, with a focus on applications such as batteries, fuel cells, supercapacitors, and electrolysis. By integrating AI-driven algorithms, researchers and engineers can rapidly analyze complex datasets, predict material properties, and optimize performance parameters, significantly reducing the time and cost of experimentation. Core AI techniques, including machine learning, neural networks, reinforcement learning, and predictive analytics, are explored in depth, highlighting their applications in electrochemistry. These techniques enable the prediction of reaction kinetics, modeling of complex electrochemical behaviors, optimization of energy storage and conversion systems, and data-driven decision-making for material discovery and process control. The chapter also examines emerging trends, including AI-enabled simulations, sustainable material design, and the integration of AI in next-generation systems. The interdisciplinary nature of these innovations is emphasized, showcasing collaboration across physics, chemistry, and data science. In addition to highlighting opportunities, the chapter also critically examines key challenges such as data scarcity, fragmentation, and the limited interpretability and transferability of AI models. These constraints pose significant hurdles to broader adoption and reliability, underscoring the need for standardized datasets, explainable AI, and domain-aware model development. Ultimately, the chapter underscores AI’s pivotal role in accelerating advancements in electrochemical technologies, fostering sustainable energy solutions, and shaping the future of intelligent energy systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助HCl采纳,获得10
刚刚
zy发布了新的文献求助10
刚刚
科研通AI6应助寒冷的箴采纳,获得10
1秒前
所所应助小羊呀采纳,获得10
1秒前
白菜发布了新的文献求助10
1秒前
ding应助DCH采纳,获得10
2秒前
2秒前
2秒前
叶楼应助GEMINI采纳,获得10
2秒前
深情安青应助香蕉梨愁采纳,获得10
2秒前
领导范儿应助VAN喵采纳,获得10
2秒前
TAO发布了新的文献求助10
3秒前
3秒前
zzy发布了新的文献求助10
3秒前
ns发布了新的文献求助10
3秒前
3秒前
魔幻小蚂蚁完成签到,获得积分10
4秒前
jiang_tian完成签到,获得积分10
4秒前
4秒前
HaoHao04完成签到 ,获得积分10
5秒前
5秒前
5秒前
明亮觅风完成签到,获得积分10
5秒前
family发布了新的文献求助10
6秒前
6秒前
秋不落棠完成签到,获得积分10
6秒前
梅姬斯图斯完成签到,获得积分10
7秒前
bkagyin应助小学森采纳,获得10
7秒前
机灵磬发布了新的文献求助10
7秒前
科研通AI6应助CZY采纳,获得10
7秒前
yuuuu发布了新的文献求助10
7秒前
星辰大海应助aaa采纳,获得10
8秒前
yuyuxiaoyu完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
lt2发布了新的文献求助30
9秒前
9秒前
板凳发布了新的文献求助10
9秒前
9秒前
dghq关注了科研通微信公众号
10秒前
单薄雅阳发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724