作者
Limin Wang,Xinyue Liu,Cunxiao Lai,Jiabao Liu,Wenqi Wang,Xiao-Mei Wang,Xin Bo,Tao cheng,Jianfeng Li,Zenglin Wang,Xubin Lu,Limin Wang,Xinyue Liu,Cunxiao Lai,Jiabao Liu,Wenqi Wang,Xiao-Mei Wang,Xin Bo,Tao cheng,Jianfeng Li
摘要
Electrocatalytic water splitting offers a promising route to sustainable H2, but the oxygen evolution reaction (OER) in alkaline media remains the principal bottleneck for activity and durability. This review focuses on alkaline OER and integrates mechanism, kinetics, materials design, and cell-level considerations. Reaction mechanisms are outlined, including the adsorbate evolution mechanism (AEM) and the lattice oxygen mediated mechanism (LOM), together with universal scaling constraints and operando reconstruction of precatalysts into active oxyhydroxides. Strategies for electronic tuning, defect creation, and heterointerface design are linked to measurable kinetics, including iR-corrected overpotential, Tafel slope, charge transfer resistance, and electrochemically active surface area (ECSA). Representative catalyst families are critically evaluated, covering Ir and Ru oxides, Ni-, Fe-, and Co-based compounds, carbon-based materials, and heterostructure systems. Electrolyte engineering is discussed, including control of Fe impurities and cation and anion effects, and gas management at current densities of 100–500 mA·cm−2 and higher. Finally, we outline challenges and directions that include operando discrimination between mechanisms and possible crossover between AEM and LOM, strategies to relax scaling relations using dual sites and interfacial water control, and constant potential modeling with explicit solvation and electric fields to enable efficient, scalable alkaline electrolyzers.