过电位
析氧
密度泛函理论
催化作用
材料科学
钨
分解水
电解水
化学工程
浸出(土壤学)
电解
吸附
无机化学
再分配(选举)
纳米技术
可持续能源
活动站点
化学物理
化学
电流密度
氧气
扩展X射线吸收精细结构
解耦(概率)
作者
Junsu Kim,Ik Seon Kwon,Jiheon Lim,Sol A Lee,Woo Seok Cheon,Jin Hyuk Cho,Sung Hyuk Park,Yeong Jae Kim,Mi Gyoung Lee,Ki Chang Kwon,Sun Hwa Park,Soo Young Kim,Ho Won Jang
标识
DOI:10.1038/s41467-026-68735-3
摘要
Lowering the overpotential of oxygen evolution reaction with electrocatalysts is essential for efficient renewable-electricity-driven electrolysis. Active noble-metal catalysts suffer from leaching and scarcity, while non-noble alternatives face limited intrinsic activity. Here we combine computational guidance with experimental validation to identify atomically dispersed tungsten within NiFe oxyhydroxide, namely W1-NiFeOOH, as a promising noble-metal-free oxygen evolution reaction catalyst. An equivariant transformer-based machine-learning interatomic potential accelerates out-of-domain adsorption energy predictions and nominates W1-NiFeOOH from 3,976 single-atom-incorporated metal oxyhydroxide configurations. Cyclic-electrodeposited W1-NiFeOOH achieves a high current density of 13.1 A cm-2 at 2.0 V and remains stable for 500 hours in alkaline exchange-membrane water electrolysis with commercial membranes. In situ spectroscopy and density functional theory calculations suggest that subsurface W promoter induces synergistic electron redistribution at neighboring Ni-O-Fe edge active sites, thereby lowering the proton-coupled electron-transfer barrier for the deprotonation step and facilitating transformation into the active γ-phase. This integrated computational-experimental workflow provides a blueprint for cost-effective catalyst design for sustainable energy systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI