Nanoparticles with rationally designed isoelectronic traps as fillers significantly enhance breakdown strength and electrostatic energy density of polymer composites

材料科学 复合材料 电介质 纳米颗粒 聚合物 空间电荷 电场 纳米复合材料 电荷密度 电子 光电子学 纳米技术 量子力学 物理
作者
Junyi Yu,Shanjun Ding,Shuhui Yu,Yu-Chen Lu,Pengpeng Xu,Baojin Chu,Rong Sun,Jianbin Xu,Ching‐Ping Wong
出处
期刊:Composites Science and Technology [Elsevier BV]
卷期号:195: 108201-108201 被引量:40
标识
DOI:10.1016/j.compscitech.2020.108201
摘要

Abstract Dielectric polymer nanocomposites with a high energy density and high charge-discharge efficiency are urgently in need which enable miniaturization of both electrical and electronic systems. One critical challenge for achieving a high energy density is the suppression of space charge movement in the composites which relates to the dielectric breakdown strength and thus energy density. Herein ZnS:O nanoparticles, in which a part of S in ZnS was substituted by O, were synthesized. The difference of electronegativity (ΔEN = 0.86) between S and O creates isoelectronic traps in the nanoparticles, which can to some extent bind space charges and suppress their movement. As a result, with ZnS:O as fillers and polyvinylidene fluoride (PVDF) as a host, the composites achieved a breakdown strength as high as 6000 kV/cm and an energy density of 14.4 J/cm3 with 2.5 vol% ZnS:O nanoparticles, which are nearly twice and over three times respectively of those of the pure PVDF (Eb ~3183 kV/cm, 4.6 J/cm3), and also much higher than those of ZnS filled PVDF. Moreover, the dielectric loss and leakage current were effectively suppressed, leading to a high charge-discharge efficiency of up to 97%. The present work provides an efficient approach of modulating the dielectric and electric performance of nanocomposites by confining charge carriers in the isoelectric traps. The effect was investigated by calculation of electric field threshold and electron hopping distance. Finite element simulation was employed to understand the mechanism which vividly interprets the above phenomenon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yn发布了新的文献求助10
刚刚
我是老大应助张雯悦采纳,获得10
3秒前
zjw完成签到,获得积分10
4秒前
喵呜完成签到 ,获得积分10
4秒前
5秒前
GGbond完成签到,获得积分10
7秒前
8秒前
9秒前
11秒前
ll完成签到,获得积分10
12秒前
科研啊科研完成签到,获得积分10
13秒前
嘤嘤嘤发布了新的文献求助10
17秒前
科研通AI2S应助奈何采纳,获得10
18秒前
忆点儿孤狼完成签到,获得积分10
23秒前
一株多肉完成签到,获得积分10
24秒前
Jzhang完成签到,获得积分10
25秒前
完美世界应助潇潇雨歇采纳,获得10
27秒前
qiao应助hh采纳,获得10
28秒前
霸气的小成成完成签到,获得积分10
28秒前
29秒前
33秒前
33秒前
情怀应助科研通管家采纳,获得10
33秒前
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
热心乌完成签到,获得积分0
35秒前
ghy完成签到,获得积分10
35秒前
粥小周发布了新的文献求助10
35秒前
2568269431完成签到 ,获得积分10
41秒前
Hester完成签到,获得积分10
41秒前
罗实完成签到 ,获得积分10
42秒前
搞怪的紫雪完成签到,获得积分10
42秒前
ll发布了新的文献求助30
44秒前
迷人的沛山完成签到 ,获得积分10
44秒前
贾文斌完成签到,获得积分10
45秒前
46秒前
愤怒的之玉完成签到 ,获得积分10
48秒前
梁晓婉完成签到,获得积分10
48秒前
zdx1022完成签到,获得积分10
50秒前
xmz完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779759
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10221975
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549