表型
计算生物学
生物
Destiny(ISS模块)
歧管(流体力学)
遗传学
摄动(天文学)
基因
细胞
非线性降维
进化生物学
理论计算机科学
计算机科学
人工智能
物理
降维
机械工程
工程类
量子力学
天文
作者
Thomas M. Norman,Max A. Horlbeck,Joseph M. Replogle,Alex Y. Ge,Albert Xu,Marco Jost,Luke A. Gilbert,Jonathan S. Weissman
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2019-08-08
卷期号:365 (6455): 786-793
被引量:234
标识
DOI:10.1126/science.aax4438
摘要
Manifold destiny Mapping of genetic interactions (GIs) is usually based on cell fitness as the phenotypic readout, which obscures the mechanistic origin of interactions. Norman et al. developed a framework for mapping and understanding GIs. This approach leverages high-dimensional single-cell RNA sequencing data gathered from CRISPR-mediated, pooled perturbation screens. Diverse transcriptomic phenotypes construct a “manifold” representing all possible states of the cell. Each perturbation and GI projects the cell state to a particular position on this manifold, enabling unbiased ordering of genes in pathways and systematic classifications of GIs. Science , this issue p. 786
科研通智能强力驱动
Strongly Powered by AbleSci AI