工作流程
超声波
计算机科学
模态(人机交互)
深度学习
人工智能
医学物理学
机器学习
医学
放射科
数据库
作者
Zeynettin Akkus,Jason Cai,Arunnit Boonrod,Atefeh Zeinoddini,Alexander D. Weston,Kenneth A. Philbrick,Bradley J. Erickson
标识
DOI:10.1016/j.jacr.2019.06.004
摘要
Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics processing unit computing power to identify abstract and complex imaging features. This has given rise to tremendous opportunities such as providing robust and generalizable AI models for improving image acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow.
科研通智能强力驱动
Strongly Powered by AbleSci AI