The Synthesizability of Molecules Proposed by Generative Models

化学空间 计算机科学 药物发现 启发式 人工智能 工作流程 生成语法 机器学习 班级(哲学) 过程(计算) 修剪 生成模型 功能(生物学) 生物信息学 生物 农学 操作系统 进化生物学 数据库
作者
Wenhao Gao,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 5714-5723 被引量:298
标识
DOI:10.1021/acs.jcim.0c00174
摘要

The discovery of functional molecules is an expensive and time-consuming process, exemplified by the rising costs of small molecule therapeutic discovery. One class of techniques of growing interest for early stage drug discovery is de novo molecular generation and optimization, catalyzed by the development of new deep learning approaches. These techniques can suggest novel molecular structures intended to maximize a multiobjective function, e.g., suitability as a therapeutic against a particular target, without relying on brute-force exploration of a chemical space. However, the utility of these approaches is stymied by ignorance of synthesizability. To highlight the severity of this issue, we use a data-driven computer-aided synthesis planning program to quantify how often molecules proposed by state-of-the-art generative models cannot be readily synthesized. Our analysis demonstrates that there are several tasks for which these models generate unrealistic molecular structures despite performing well on popular quantitative benchmarks. Synthetic complexity heuristics can successfully bias generation toward synthetically tractable chemical space, although doing so necessarily detracts from the primary objective. This analysis suggests that to improve the utility of these models in real discovery workflows, new algorithm development is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得20
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
暖暖发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助精明的涵雁采纳,获得10
3秒前
3秒前
传奇3应助个性尔槐采纳,获得10
3秒前
李健春发布了新的文献求助10
4秒前
niuniu发布了新的文献求助10
5秒前
5秒前
一帆风顺发布了新的文献求助10
7秒前
Danaus发布了新的文献求助10
8秒前
9秒前
科研通AI5应助shi采纳,获得10
9秒前
发嗲的火龙果完成签到,获得积分10
11秒前
11秒前
abao完成签到 ,获得积分10
12秒前
12秒前
niuniu完成签到,获得积分10
12秒前
上官若男应助是真的采纳,获得10
13秒前
14秒前
兑现发布了新的文献求助10
14秒前
ZKcrane完成签到,获得积分10
15秒前
15秒前
个性尔槐发布了新的文献求助10
18秒前
18秒前
雪白鸿涛发布了新的文献求助10
19秒前
19秒前
Orange应助龚幻梦采纳,获得10
19秒前
shi发布了新的文献求助10
20秒前
20秒前
23秒前
Perrylin718发布了新的文献求助10
23秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842615
求助须知:如何正确求助?哪些是违规求助? 3384669
关于积分的说明 10536580
捐赠科研通 3105212
什么是DOI,文献DOI怎么找? 1710077
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110