Deep Learning–Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion

医学 神经影像学 闭塞 接收机工作特性 深度学习 卷积神经网络 冲程(发动机) 改良兰金量表 人工智能 放射科 磁共振弥散成像 内科学 磁共振成像 缺血性中风 缺血 计算机科学 工程类 精神科 机械工程
作者
Hidehisa Nishi,Naoya Oishi,Akira Ishii,Ono I,Takenori Ogura,Tadashi Sunohara,Hideo Chihara,Ryu Fukumitsu,Masakazu Okawa,Norikazu Yamana,Hirotoshi Imamura,Nobutake Sadamasa,Taketo Hatano,Ichiro NAKAHARA,Nobuyuki Sakai,Susumu Miyamoto
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (5): 1484-1492 被引量:69
标识
DOI:10.1161/strokeaha.119.028101
摘要

Background and Purpose— For patients with large vessel occlusion, neuroimaging biomarkers that evaluate the changes in brain tissue are important for determining the indications for mechanical thrombectomy. In this study, we applied deep learning to derive imaging features from pretreatment diffusion-weighted image data and evaluated the ability of these features in predicting clinical outcomes for patients with large vessel occlusion. Methods— This multicenter retrospective study included patients with anterior circulation large vessel occlusion treated with mechanical thrombectomy between 2013 and 2018. We designed a 2-output deep learning model based on convolutional neural networks (the convolutional neural network model). This model employed encoder-decoder architecture for the ischemic lesion segmentation, which automatically extracted high-level feature maps in its middle layers, and used its information to predict the clinical outcome. Its performance was internally validated with 5-fold cross-validation, externally validated, and the results compared with those from the standard neuroimaging biomarkers Alberta Stroke Program Early CT Score and ischemic core volume. The prediction target was a good clinical outcome, defined as a modified Rankin Scale score at 90-day follow-up of 0 to 2. Results— The derivation cohort included 250 patients, and the validation cohort included 74 patients. The convolutional neural network model showed the highest area under the receiver operating characteristic curve: 0.81±0.06 compared with 0.63±0.05 and 0.64±0.05 for the Alberta Stroke Program Early CT Score and ischemic core volume models, respectively. In the external validation, the area under the curve for the convolutional neural network model was significantly superior to those for the other 2 models. Conclusions— Compared with the standard neuroimaging biomarkers, our deep learning model derived a greater amount of prognostic information from pretreatment neuroimaging data. Although a confirmatory prospective evaluation is needed, the high-level imaging features derived by deep learning may offer an effective prognostic imaging biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
补作业的糖豆完成签到,获得积分10
3秒前
HOPE发布了新的文献求助10
3秒前
wenxiang发布了新的文献求助10
4秒前
缓慢的从寒完成签到,获得积分10
7秒前
11秒前
11秒前
白小超人完成签到 ,获得积分10
13秒前
EKo完成签到,获得积分10
13秒前
水门发布了新的文献求助30
16秒前
1111111111111发布了新的文献求助10
17秒前
Ankher发布了新的文献求助10
20秒前
科研通AI5应助水门采纳,获得10
22秒前
MaFY完成签到,获得积分10
26秒前
Pretrial完成签到 ,获得积分10
27秒前
32秒前
34秒前
34秒前
36秒前
Ankher完成签到,获得积分10
36秒前
斐嘿嘿发布了新的文献求助10
37秒前
GenX发布了新的文献求助10
39秒前
酷炫抽屉完成签到 ,获得积分10
40秒前
WUT完成签到,获得积分10
44秒前
阿夸完成签到,获得积分10
45秒前
不远完成签到,获得积分10
49秒前
1111111111111完成签到,获得积分10
53秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
54秒前
JamesPei应助科研通管家采纳,获得10
54秒前
pluto应助科研通管家采纳,获得10
54秒前
乐乐应助科研通管家采纳,获得10
54秒前
pluto应助科研通管家采纳,获得10
54秒前
54秒前
大个应助somous采纳,获得10
55秒前
56秒前
勇敢的小狗完成签到 ,获得积分10
57秒前
1分钟前
寂寞的季节69完成签到 ,获得积分10
1分钟前
fzh1234发布了新的文献求助20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751