Learning Where to See: A Novel Attention Model for Automated Immunohistochemical Scoring

计算机科学 人工智能 判别式 模式识别(心理学) 卷积神经网络 上下文图像分类 深度学习 机器学习 图像(数学)
作者
Talha Qaiser,Nasir Rajpoot
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2620-2631 被引量:70
标识
DOI:10.1109/tmi.2019.2907049
摘要

Estimating over-amplification of human epidermal growth factor receptor 2 (HER2) on invasive breast cancer is regarded as a significant predictive and prognostic marker. We propose a novel deep reinforcement learning (DRL)-based model that treats immunohistochemical (IHC) scoring of HER2 as a sequential learning task. For a given image tile sampled from multi-resolution giga-pixel whole slide image (WSI), the model learns to sequentially identify some of the diagnostically relevant regions of interest (ROIs) by following a parameterized policy. The selected ROIs are processed by recurrent and residual convolution networks to learn the discriminative features for different HER2 scores and predict the next location, without requiring to process all the sub-image patches of a given tile for predicting the HER2 score, mimicking the histopathologist who would not usually analyze every part of the slide at the highest magnification. The proposed model incorporates a task-specific regularization term and inhibition of return mechanism to prevent the model from revisiting the previously attended locations. We evaluated our model on two IHC datasets: a publicly available dataset from the HER2 scoring challenge contest and another dataset consisting of WSIs of gastroenteropancreatic neuroendocrine tumor sections stained with Glo1 marker. We demonstrate that the proposed model outperforms other methods based on state-of-the-art deep convolutional networks. To the best of our knowledge, this is the first study using DRL for IHC scoring and could potentially lead to wider use of DRL in the domain of computational pathology reducing the computational burden of the analysis of large multi-gigapixel histology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小商采纳,获得10
刚刚
刚刚
1秒前
AJ完成签到 ,获得积分10
4秒前
lcylidong完成签到,获得积分10
4秒前
4秒前
5秒前
自然水杯完成签到,获得积分10
5秒前
lizhiqian2024发布了新的文献求助10
6秒前
科研通AI5应助江莱采纳,获得10
6秒前
星辰大海应助hanhan采纳,获得10
6秒前
酷酷幻柏发布了新的文献求助10
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
老茗同学给老茗同学的求助进行了留言
12秒前
敏感初露完成签到,获得积分10
12秒前
情怀应助刘某采纳,获得10
14秒前
14秒前
南风发布了新的文献求助10
15秒前
完美世界应助酷酷幻柏采纳,获得10
15秒前
敏感初露发布了新的文献求助10
16秒前
华仔应助有何丿不可采纳,获得10
16秒前
韩野发布了新的文献求助10
16秒前
jasmine完成签到,获得积分10
17秒前
18秒前
19秒前
小商发布了新的文献求助10
19秒前
852应助碧蓝飞雪采纳,获得10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802475
求助须知:如何正确求助?哪些是违规求助? 3348107
关于积分的说明 10336540
捐赠科研通 3064030
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997