Validation of Chest Computed Tomography Artificial Intelligence to Determine the Requirement for Mechanical Ventilation and Risk of Mortality in Hospitalized Coronavirus Disease-19 Patients in a Tertiary Care Center In Mexico City

医学 尤登J统计 急诊分诊台 接收机工作特性 曲线下面积 机械通风 逻辑回归 计算机断层摄影术 放射科 多元分析 回顾性队列研究 内科学 急诊医学
作者
Yukiyoshi Kimura-Sandoval,Mary E. Arévalo-Molina,César Cristancho-Rojas,Yumi Kimura-Sandoval,Victoria Rebollo-Hurtado,Mariana Licano-Zubiate,Mónica Chapa-Ibargüengoitia,Gisela Muñoz-López
出处
期刊:Revista De Investigacion Clinica [Permanyer]
卷期号:73 (2) 被引量:18
标识
DOI:10.24875/ric.20000451
摘要

Background: Artificial intelligence (AI) in radiology has improved diagnostic performance and shortened reading times of coronavirus disease 2019 (COVID-19) patients' studies.Objectives: The objectives pf the study were to analyze the performance of a chest computed tomography (CT) AI quantitative algorithm for determining the risk of mortality/mechanical ventilation (MV) in hospitalized COVID-19 patients and explore a prognostic multivariate model in a tertiary-care center in Mexico City.Methods: Chest CT images of 166 COVID-19 patients hospitalized from April 1 to 20, 2020, were retrospectively analyzed using AI algorithm software.Data were collected from their medical records.We analyzed the diagnostic yield of the relevant CT variables using the area under the ROC curve (area under the curve [AUC]).Optimal thresholds were obtained using the Youden index.We proposed a predictive logistic model for each outcome based on CT AI measures and predetermined laboratory and clinical characteristics.Results: The highest diagnostic yield of the assessed CT variables for mortality was the percentage of total opacity (threshold >51%; AUC = 0.88, sensitivity = 74%, and specificity = 91%).The AUC of the CT severity score (threshold > 12.5) was 0.88 for MV (sensitivity = 65% and specificity = 92%).The proposed prognostic models include the percentage of opacity and lactate dehydrogenase level for mortality and troponin I and CT severity score for MV requirement. Conclusion:The AI-calculated CT severity score and total opacity percentage showed good diagnostic accuracy for mortality and met MV criteria.The proposed prognostic models using biochemical variables and imaging data measured by AI on chest CT showed good risk classification in our population of hospitalized COVID-19 patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pt完成签到 ,获得积分10
刚刚
2秒前
2秒前
zbw发布了新的文献求助10
2秒前
三号技师发布了新的文献求助30
4秒前
4秒前
4秒前
Lorain发布了新的文献求助10
4秒前
丘比特应助迅速的八宝粥采纳,获得10
5秒前
清爽老九应助chess拌麦粒采纳,获得20
5秒前
sunshine完成签到,获得积分10
6秒前
古药完成签到,获得积分10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小天发布了新的文献求助30
9秒前
大个应助Lorain采纳,获得10
9秒前
干净山柳发布了新的文献求助10
11秒前
11秒前
酷波er应助zcl采纳,获得10
13秒前
冷烟浮完成签到 ,获得积分10
14秒前
12发布了新的文献求助30
14秒前
holy完成签到,获得积分10
15秒前
三号技师完成签到,获得积分10
15秒前
陈佳发布了新的文献求助10
16秒前
16秒前
16秒前
赘婿应助干净山柳采纳,获得10
18秒前
爆米花应助吱吱采纳,获得10
19秒前
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669