A method for predictive modeling of tumor regression for lung adaptive radiotherapy

逻辑回归 放射治疗 分位数 计算机科学 预测建模 人工智能 机器学习 医学 放射科 统计 数学
作者
James Kavanaugh,Michael Roach,Zhen Ji,J Fontenot,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2083-2094 被引量:8
标识
DOI:10.1002/mp.14529
摘要

Purpose The purpose of this work is to create a decision support methodology to predict when patients undergoing radiotherapy treatment for locally advanced lung cancer would potentially benefit from adaptive radiotherapy. The proposed methodology seeks to eliminate the manual subjective review by developing an automated statistical learning model to predict when tumor regression would trigger implementation of adaptive radiotherapy based on quantified anatomic changes observed in individual patients on‐treatment cone beam computed tomographies (CTs). This proposed process seeks to improve the efficacy and efficiency of both the existing manual and automated adaptive review processes for locally advanced stage III lung cancer. Methods A predictive algorithm was developed as a decision support tool to determine the potential utility of mid‐treatment adaptive radiotherapy based on anatomic changes observed on 1158 daily CBCT images across 43 patients. The anatomic changes on each axial slice within specified regions‐of‐interest were quantified into a single value utilizing imaging similarity criteria comparing the daily CBCT to the initial simulation CT. The range of the quantified metrics for each fraction across all axial slices are reduced to specified quantiles, which are used as the predictive input to train a logistic regression algorithm. A “ground‐truth” of the need for adaptive radiotherapy based on tumor regression was evaluated systematically on each of the daily CBCTs and used as the classifier in the logistic regression algorithm. Accuracy of the predictive model was assessed utilizing both a tenfold cross validation and an independent validation dataset, with the sensitivity, specificity, and fractional accuracy compared to the ground‐truth. Results The sensitivity and specificity for the individual daily fractions ranged from 87.9%–94.3% and 91.9%‐98.6% for a probability threshold of 0.2–0.5, respectively. The corresponding average treatment fraction difference between the model predictions and assessed ART “ground‐truth” ranged from −2.25 to −0.07 fractions, with the model predictions consistently predicting the potential need for ART earlier in the treatment course. By initially utilizing a lower probability threshold, the higher sensitivity minimizes the chance of false negative by alerting the clinician to review a higher number of questionable cases. Conclusions The proposed methodology accurately predicted the first fraction at which individual patients may benefit from ART based on quantified anatomic changes observed in the on‐treatment volumetric imaging. The generalizability of the proposed method has potential to expand to additional modes of adaptive radiotherapy for lung cancer patients with observed underlying anatomic changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊阁发布了新的文献求助10
刚刚
eric888应助闫仕采纳,获得30
刚刚
hazhuxixi发布了新的文献求助10
1秒前
sober完成签到,获得积分10
2秒前
2秒前
火顺丁完成签到,获得积分10
2秒前
2秒前
Jasper应助zhanghaha采纳,获得10
3秒前
xwwdcg发布了新的文献求助10
3秒前
热心幻天完成签到,获得积分10
3秒前
科研的主完成签到 ,获得积分10
3秒前
细心天德完成签到,获得积分10
3秒前
BYC完成签到,获得积分20
4秒前
大个应助澹台无采纳,获得10
4秒前
小王关注了科研通微信公众号
4秒前
欢呼的千筹完成签到,获得积分10
4秒前
4秒前
共享精神应助miracle采纳,获得10
5秒前
5秒前
6秒前
深情不弱完成签到 ,获得积分10
6秒前
cuicui完成签到,获得积分20
6秒前
juzi完成签到 ,获得积分10
6秒前
PziPzi发布了新的文献求助10
7秒前
万能图书馆应助weirdo采纳,获得30
7秒前
11di发布了新的文献求助10
7秒前
夜游的鱼完成签到,获得积分10
7秒前
Alerina完成签到,获得积分10
7秒前
xiaozhang完成签到 ,获得积分10
8秒前
充电宝应助刘德新采纳,获得10
8秒前
MM完成签到 ,获得积分10
8秒前
9秒前
9秒前
111111发布了新的文献求助10
9秒前
spc68应助陈陈陈采纳,获得10
9秒前
cuicui发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
CodeCraft应助外向的问丝采纳,获得10
10秒前
热心幻天发布了新的文献求助10
10秒前
xiaoxixixier完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659704
求助须知:如何正确求助?哪些是违规求助? 4829909
关于积分的说明 15088114
捐赠科研通 4818433
什么是DOI,文献DOI怎么找? 2578625
邀请新用户注册赠送积分活动 1533233
关于科研通互助平台的介绍 1491959