Machine learning for the prediction of antimicrobial stewardship intervention in hospitalized patients receiving broad-spectrum agents

抗菌管理 医学 逻辑回归 药方 管理(神学) 置信区间 接收机工作特性 队列 干预(咨询) 机器学习 重症监护医学 队列研究 急诊医学 人工智能 抗生素 内科学 计算机科学 护理部 抗生素耐药性 政治 政治学 法学 微生物学 生物
作者
Rachel Bystritsky,Alex Beltran,Albert T. Young,Andrew Wong,Xiao Hu,Sarah B. Doernberg
出处
期刊:Infection Control and Hospital Epidemiology [Cambridge University Press]
卷期号:41 (9): 1022-1027 被引量:19
标识
DOI:10.1017/ice.2020.213
摘要

Abstract Objective: A significant proportion of inpatient antimicrobial prescriptions are inappropriate. Post-prescription review with feedback has been shown to be an effective means of reducing inappropriate antimicrobial use. However, implementation is resource intensive. Our aim was to evaluate the performance of traditional statistical models and machine-learning models designed to predict which patients receiving broad-spectrum antibiotics require a stewardship intervention. Methods: We performed a single-center retrospective cohort study of inpatients who received an antimicrobial tracked by the antimicrobial stewardship program. Data were extracted from the electronic medical record and were used to develop logistic regression and boosted-tree models to predict whether antibiotic therapy required stewardship intervention on any given day as compared to the criterion standard of note left by the antimicrobial stewardship team in the patient’s chart. We measured the performance of these models using area under the receiver operating characteristic curves (AUROC), and we evaluated it using a hold-out validation cohort. Results: Both the logistic regression and boosted-tree models demonstrated fair discriminatory power with AUROCs of 0.73 (95% confidence interval [CI], 0.69–0.77) and 0.75 (95% CI, 0.72–0.79), respectively ( P = .07). Both models demonstrated good calibration. The number of patients that would need to be reviewed to identify 1 patient who required stewardship intervention was high for both models (41.7–45.5 for models tuned to a sensitivity of 85%). Conclusions: Complex models can be developed to predict which patients require a stewardship intervention. However, further work is required to develop models with adequate discriminatory power to be applicable to real-world antimicrobial stewardship practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzx完成签到,获得积分20
1秒前
丁一发布了新的文献求助10
1秒前
kx完成签到,获得积分10
2秒前
2秒前
要文献啊完成签到 ,获得积分10
2秒前
偷懒完成签到,获得积分10
2秒前
禹丹烟发布了新的文献求助10
2秒前
2秒前
小于完成签到,获得积分10
3秒前
Hello应助唐磊采纳,获得10
3秒前
yu001发布了新的文献求助10
3秒前
mmm发布了新的文献求助10
3秒前
Le发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
4秒前
lzx发布了新的文献求助30
5秒前
黎乐荷完成签到,获得积分10
7秒前
缪慧敏发布了新的文献求助30
7秒前
极恶非道完成签到,获得积分10
7秒前
大模型应助认真的断秋采纳,获得10
8秒前
8秒前
丁一完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
wansida完成签到,获得积分10
9秒前
fhr发布了新的文献求助10
12秒前
kk发布了新的文献求助10
12秒前
cys发布了新的文献求助10
12秒前
废寝忘食发布了新的文献求助10
13秒前
抹茶夏天完成签到,获得积分10
14秒前
韶华发布了新的文献求助10
14秒前
Shawn完成签到,获得积分10
14秒前
忧虑的梦槐完成签到,获得积分10
14秒前
英俊的铭应助英勇代荷采纳,获得10
14秒前
ZZzzaq发布了新的文献求助30
14秒前
ding应助姜sir采纳,获得10
15秒前
缪慧敏完成签到,获得积分10
15秒前
唐磊发布了新的文献求助10
15秒前
完美世界应助YJanMng采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520177
求助须知:如何正确求助?哪些是违规求助? 3962596
关于积分的说明 12281401
捐赠科研通 3625751
什么是DOI,文献DOI怎么找? 1995457
邀请新用户注册赠送积分活动 1031515
科研通“疑难数据库(出版商)”最低求助积分说明 922071