LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease Diagnosis

过度拟合 计算机科学 人工智能 植物病害 自动化 多样性(控制论) 机器学习 领域(数学) 上下文图像分类 模式识别(心理学) 计算机视觉 图像(数学) 人工神经网络 工程类 数学 机械工程 生物 生物技术 纯数学
作者
Quan Huu,Hiroyuki Uga,Satoshi Kagiwada,Hitoshi Iyatomi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1258-1267 被引量:117
标识
DOI:10.1109/tase.2020.3041499
摘要

Many applications for the automated diagnosis of plant disease have been developed based on the success of deep learning techniques. However, these applications often suffer from overfitting, and the diagnostic performance is drastically decreased when used on test data sets from new environments. In this article, we propose LeafGAN, a novel image-to-image translation system with own attention mechanism. LeafGAN generates a wide variety of diseased images via transformation from healthy images, as a data augmentation tool for improving the performance of plant disease diagnosis. Due to its own attention mechanism, our model can transform only relevant areas from images with a variety of backgrounds, thus enriching the versatility of the training images. Experiments with five-class cucumber disease classification show that data augmentation with vanilla CycleGAN cannot help to improve the generalization, i.e., disease diagnostic performance increased by only 0.7% from the baseline. In contrast, LeafGAN boosted the diagnostic performance by 7.4%. We also visually confirmed that the generated images by our LeafGAN were much better quality and more convincing than those generated by vanilla CycleGAN. The code is available publicly at https://github.com/IyatomiLab/LeafGAN. Note to Practitioners Automated plant disease diagnosis systems play an important role in the agricultural automation field. Building a practical image-based automatic plant diagnosis system requires collecting a wide variety of disease images with reliable label information. However, it is quite labor-intensive. Conventional systems have reported relatively high diagnosis performance, but most of their scores were largely biased due to the “latent similarity” between training and test images, and their true diagnosis capabilities were much lower than claimed. To address this issue, we propose LeafGAN, which generates countless diverse and high-quality training images; it works as an efficient data augmentation for the diagnosis classifier. Such generated images can be used as useful resources for improving the performance of the cucumber disease diagnosis systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周完成签到,获得积分10
刚刚
dudu完成签到 ,获得积分10
1秒前
暮晓见完成签到 ,获得积分10
3秒前
所所应助美好雁荷采纳,获得10
4秒前
科研通AI2S应助Lucia采纳,获得10
6秒前
天啦噜完成签到 ,获得积分10
6秒前
嘻嘻哈哈完成签到 ,获得积分10
6秒前
清晨的小鹿完成签到,获得积分10
9秒前
jopaul完成签到,获得积分10
9秒前
9秒前
乐乐应助coffee333采纳,获得10
9秒前
李友健完成签到 ,获得积分10
10秒前
12秒前
科研通AI5应助仪小彤采纳,获得30
12秒前
13秒前
14秒前
15秒前
独指蜗牛完成签到 ,获得积分10
15秒前
罗蜜欧完成签到,获得积分10
16秒前
pjh发布了新的文献求助10
17秒前
18秒前
李爱国应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
打打应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得20
20秒前
zmnzmnzmn应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304