亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices

物联网 人工神经网络 工业4.0 智慧城市
作者
Weiwei Fang,Xue Feng,Yi Ding,Naixue Xiong,Victor C. M. Leung
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (9): 6144-6152 被引量:17
标识
DOI:10.1109/tii.2020.3044930
摘要

Motivated by the prospects of 5G communications and industrial Internet of Things (IoT), recent years have seen the rise of a new computing paradigm, edge computing, which shifts data analytics to network edges that are at the proximity of big data sources. Although deep neural networks (DNNs) have been extensively used in many platforms and scenarios, they are usually both compute and memory intensive, thus, difficult to be deployed on resource-limited edge devices and in performance-demanding edge applications. Hence, there is an urgent need for techniques that enable DNN models to fit into edge devices, while ensuring acceptable execution costs and inference accuracy. This article proposes an on-demand DNN model inference system for industrial edge devices, called knowledge distillation and early exit on edge (EdgeKE). It focuses on the following two design knobs: first, DNN compression based on knowledge distillation, which trains the compact edge models under the supervision of large complex models for improving accuracy and speed; second, DNN acceleration based on early exit, which provides flexible choices for satisfying distinct latency or accuracy requirements from edge applications. By extensive evaluations on the CIFAR100 dataset and across three state-of-art edge devices, experimental results demonstrate that EdgeKE significantly outperforms the baseline models in terms of inference latency and memory footprint, while maintaining competitive classification accuracy. Furthermore, EdgeKE is verified to be efficiently adaptive to the application requirements on the inference performance. The accuracy loss is within 4.84% under various latency constraints, and the speedup ratio is up to 3.30× under various accuracy requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助zhangxiaopan采纳,获得10
33秒前
FuRui发布了新的文献求助10
36秒前
1分钟前
maclogos发布了新的文献求助10
1分钟前
1分钟前
zhangxiaopan发布了新的文献求助10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Ava应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
gszy1975发布了新的文献求助10
4分钟前
烨枫晨曦完成签到,获得积分10
4分钟前
5分钟前
nbtzy完成签到,获得积分10
5分钟前
花落无声完成签到 ,获得积分10
6分钟前
dapan0622完成签到,获得积分10
6分钟前
冰西瓜完成签到 ,获得积分0
7分钟前
潇湘完成签到 ,获得积分10
7分钟前
zhangxiaopan发布了新的文献求助10
7分钟前
科研通AI2S应助专一的石头采纳,获得10
7分钟前
时尚的飞机完成签到,获得积分10
7分钟前
meng发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
赘婿应助zhangxiaopan采纳,获得10
9分钟前
积雪完成签到 ,获得积分10
9分钟前
9分钟前
zsc发布了新的文献求助10
9分钟前
zsc完成签到,获得积分10
9分钟前
10分钟前
10分钟前
着急的翠彤完成签到,获得积分20
10分钟前
孙老师完成签到 ,获得积分10
10分钟前
领导范儿应助着急的翠彤采纳,获得10
10分钟前
10分钟前
10分钟前
乐乐应助LeezZZZ采纳,获得10
10分钟前
11分钟前
LeezZZZ发布了新的文献求助10
11分钟前
11分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137976
求助须知:如何正确求助?哪些是违规求助? 4337505
关于积分的说明 13511628
捐赠科研通 4176350
什么是DOI,文献DOI怎么找? 2289973
邀请新用户注册赠送积分活动 1290503
关于科研通互助平台的介绍 1232416