Multimodal Disentangled Domain Adaption for Social Media Event Rumor Detection

计算机科学 谣言 社会化媒体 事件(粒子物理) 水准点(测量) 人工智能 域适应 特征学习 代表(政治) 数据科学 机器学习 万维网 分类器(UML) 大地测量学 公共关系 物理 量子力学 政治学 地理 政治 法学
作者
Huaiwen Zhang,Shengsheng Qian,Quan Fang,Changsheng Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 4441-4454 被引量:61
标识
DOI:10.1109/tmm.2020.3042055
摘要

With the rapid development of social media and the increasing scale of social media data, the rumor detection on social media platforms has become vitally crucial. The key challenges for rumor detection on social media platforms are how to identify rumors deeply entangled with the specific content and how to detect rumors for the emerging social media events without labeled data. Unfortunately, most of the existing approaches can hardly handle these challenges since they tend to learn event-specific features and cannot transfer the learned features to newly emerged events. To tackle the above challenges, we propose a novel Multimodal Disentangled Domain Adaption (MDDA) method which can derive event-invariant features and thus benefit the detection of rumors on emerging social media events. The model consists of two components: the multimodal disentangled representation learning and the unsupervised domain adaptation. The multimodal disentangled representation learning is responsible for disentangling the multimedia posts into the content features and the rumor style features, and removing the content-specific features from post representation. The unsupervised domain adaptation aims to filter out the event-specific features and keep shared rumor style features among events. Based on the final event-invariant rumor style features, we train a robust social media rumor detector that can transfer knowledge from source events to the target events, which can perform well on the newly emerged events. Extensive experiments on two Twitter benchmark datasets demonstrate that our rumor detection model outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助风清扬采纳,获得10
刚刚
Darcy完成签到,获得积分10
刚刚
蔡蔡完成签到 ,获得积分10
刚刚
qf完成签到,获得积分10
1秒前
1秒前
AAA鱼塘建材陈哥完成签到,获得积分10
2秒前
2秒前
wangwang完成签到,获得积分10
2秒前
小憩完成签到,获得积分10
2秒前
3秒前
LL完成签到,获得积分10
4秒前
共享精神应助谭金钰采纳,获得20
4秒前
4秒前
isasi完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
sixwin完成签到,获得积分10
5秒前
liw发布了新的文献求助10
5秒前
6秒前
QJ完成签到,获得积分10
6秒前
wangwang发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
sixwin发布了新的文献求助10
8秒前
kikichiu应助年轻真好啊采纳,获得30
8秒前
10秒前
Jasper应助叶文言采纳,获得10
10秒前
所所应助叶文言采纳,获得10
10秒前
科目三应助叶文言采纳,获得10
10秒前
隐形曼青应助叶文言采纳,获得10
10秒前
大模型应助酚羟基装醇采纳,获得10
10秒前
浮盛发布了新的文献求助10
10秒前
科研通AI6应助明月采纳,获得10
10秒前
算了发布了新的文献求助30
11秒前
11秒前
11秒前
YYYYYY完成签到,获得积分10
12秒前
乐乐应助寒冷的绾绾采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526726
求助须知:如何正确求助?哪些是违规求助? 4616761
关于积分的说明 14555649
捐赠科研通 4555267
什么是DOI,文献DOI怎么找? 2496269
邀请新用户注册赠送积分活动 1476531
关于科研通互助平台的介绍 1448101