已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic defect detection of metro tunnel surfaces using a vision-based inspection system

图像拼接 计算机科学 人工智能 软件 特征(语言学) 计算机视觉 卷积神经网络 图像处理 机器视觉 工程类 图像(数学) 语言学 哲学 程序设计语言
作者
Dawei Li,Qian Xie,Xiaoxi Gong,Zhenghao Yu,Jinxuan Xu,Yangxing Sun,Jun Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:47: 101206-101206 被引量:186
标识
DOI:10.1016/j.aei.2020.101206
摘要

Due to the impact of the surrounding environment changes, train-induced vibration, and human interference, damage to metro tunnel surfaces frequently occurs. Therefore, accidents caused by the tunnel surface damage may happen at any time, since the lack of adequate and efficient maintenance. To our knowledge, effective maintenance heavily depends on the all-round and accurate defect inspection, which is a challenging task, due to the harsh environment (e.g., insufficient illumination, the limited time window for inspection, etc.). To address these problems, we design an automatic Metro Tunnel Surface Inspection System (MTSIS) for the efficient and accurate defect detection, which covers the design of hardware and software parts. For the hardware component, we devise a data collection system to capture tunnel surface images with high resolution at high speed. For the software part, we present a tunnel surface image pre-processing approach and a defect detection method to recognize defects with high accuracy. The image pre-processing approach includes image contrast enhancement and image stitching in a coarse-to-fine manner, which are employed to improve the quality of raw images and to avoid repeating detection for overlapped regions of the captured tunnel images respectively. To achieve automatic tunnel surface defect detection with high precision, we propose a multi-layer feature fusion network, based on the Faster Region-based Convolutional Neural Network (Faster RCNN). Our image pre-processing and the defect detection methods also promising performance in terms of recall and precision, which is demonstrated through a series of practical experimental results. Moreover, our MTSIS has been successfully applied on several metro lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美绝施完成签到 ,获得积分10
1秒前
JW2071367完成签到,获得积分10
1秒前
番茄黄瓜芝士片完成签到 ,获得积分10
1秒前
6秒前
碧蓝皮卡丘完成签到,获得积分10
7秒前
李爱国应助洵洵采纳,获得10
7秒前
7秒前
lj-TJUT完成签到 ,获得积分10
9秒前
9秒前
谨慎采白完成签到 ,获得积分10
9秒前
luxiaoyu发布了新的文献求助10
11秒前
贾舒涵发布了新的文献求助10
13秒前
单身的青柏完成签到 ,获得积分10
16秒前
19秒前
21秒前
yeah发布了新的文献求助10
22秒前
千寻发布了新的文献求助10
28秒前
oleskarabach发布了新的文献求助10
29秒前
43秒前
43秒前
浮游应助oleskarabach采纳,获得10
54秒前
浮游应助oleskarabach采纳,获得10
54秒前
58秒前
庾稀完成签到,获得积分20
59秒前
Yuki完成签到 ,获得积分10
59秒前
风华正茂完成签到,获得积分10
1分钟前
Yy完成签到 ,获得积分10
1分钟前
若水完成签到,获得积分10
1分钟前
缪雨阳完成签到,获得积分10
1分钟前
cdc完成签到 ,获得积分10
1分钟前
1分钟前
馆长应助缪雨阳采纳,获得30
1分钟前
天亮了完成签到,获得积分10
1分钟前
宝玉完成签到 ,获得积分10
1分钟前
FartKing完成签到,获得积分10
1分钟前
1分钟前
Echopotter完成签到,获得积分10
1分钟前
田様应助天亮了采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552510
求助须知:如何正确求助?哪些是违规求助? 3981779
关于积分的说明 12327604
捐赠科研通 3651430
什么是DOI,文献DOI怎么找? 2011147
邀请新用户注册赠送积分活动 1046210
科研通“疑难数据库(出版商)”最低求助积分说明 934787