Automatic defect detection of metro tunnel surfaces using a vision-based inspection system

图像拼接 计算机科学 人工智能 软件 特征(语言学) 计算机视觉 卷积神经网络 图像处理 机器视觉 图像(数学) 语言学 哲学 程序设计语言
作者
Dawei Li,Qian Xie,Xiaoxi Gong,Zhenghao Yu,Jinxuan Xu,Yangxing Sun,Jun Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:47: 101206-101206 被引量:144
标识
DOI:10.1016/j.aei.2020.101206
摘要

Due to the impact of the surrounding environment changes, train-induced vibration, and human interference, damage to metro tunnel surfaces frequently occurs. Therefore, accidents caused by the tunnel surface damage may happen at any time, since the lack of adequate and efficient maintenance. To our knowledge, effective maintenance heavily depends on the all-round and accurate defect inspection, which is a challenging task, due to the harsh environment (e.g., insufficient illumination, the limited time window for inspection, etc.). To address these problems, we design an automatic Metro Tunnel Surface Inspection System (MTSIS) for the efficient and accurate defect detection, which covers the design of hardware and software parts. For the hardware component, we devise a data collection system to capture tunnel surface images with high resolution at high speed. For the software part, we present a tunnel surface image pre-processing approach and a defect detection method to recognize defects with high accuracy. The image pre-processing approach includes image contrast enhancement and image stitching in a coarse-to-fine manner, which are employed to improve the quality of raw images and to avoid repeating detection for overlapped regions of the captured tunnel images respectively. To achieve automatic tunnel surface defect detection with high precision, we propose a multi-layer feature fusion network, based on the Faster Region-based Convolutional Neural Network (Faster RCNN). Our image pre-processing and the defect detection methods also promising performance in terms of recall and precision, which is demonstrated through a series of practical experimental results. Moreover, our MTSIS has been successfully applied on several metro lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
lzzzz完成签到,获得积分10
4秒前
日出发布了新的文献求助10
5秒前
5秒前
科研通AI5应助张祖伦采纳,获得10
5秒前
呆呆的豆豆兵完成签到 ,获得积分10
6秒前
追寻夏烟完成签到 ,获得积分10
6秒前
Kirito应助旺仔小秃头采纳,获得10
7秒前
李爱国应助摆烂采纳,获得10
8秒前
乐乐应助夏夏采纳,获得10
9秒前
流云发布了新的文献求助10
10秒前
11秒前
11完成签到,获得积分20
12秒前
xx发布了新的文献求助10
12秒前
13秒前
BTW完成签到,获得积分10
13秒前
Timon完成签到,获得积分10
13秒前
科研通AI5应助深情的迎海采纳,获得30
14秒前
15秒前
15秒前
sss发布了新的文献求助10
17秒前
从容的雨灵完成签到,获得积分10
17秒前
cdercder应助xx采纳,获得10
18秒前
18秒前
bellapp完成签到 ,获得积分10
19秒前
add发布了新的文献求助10
19秒前
科研通AI5应助热心的薯片采纳,获得10
19秒前
落寞醉香发布了新的文献求助10
20秒前
20秒前
as9988776654完成签到,获得积分10
21秒前
22秒前
6959fuy发布了新的文献求助10
23秒前
24秒前
旺仔小秃头完成签到,获得积分10
25秒前
cc完成签到 ,获得积分10
25秒前
xx完成签到,获得积分10
26秒前
FashionBoy应助逝月采纳,获得10
27秒前
热心的十二完成签到 ,获得积分10
27秒前
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845874
求助须知:如何正确求助?哪些是违规求助? 3388228
关于积分的说明 10552145
捐赠科研通 3108835
什么是DOI,文献DOI怎么找? 1713137
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927