Development and validation of a prognostic model based on comorbidities to predict COVID-19 severity: a population-based study

2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 医学 人口 共病 大流行 重症监护医学 内科学 环境卫生 病毒学 爆发 疾病 传染病(医学专业)
作者
Francisco Gudé,Carmen Fernández‐Merino,Lucía Ferreiro,Óscar Lado‐Baleato,Jenifer Espasandín-Domínguez,Xurxo Hervada,Carmén Cadarso-Suárez,Luís Valdés
出处
期刊:International Journal of Epidemiology [Oxford University Press]
卷期号:50 (1): 64-74 被引量:92
标识
DOI:10.1093/ije/dyaa209
摘要

Abstract Background The prognosis of patients with COVID-19 infection is uncertain. We derived and validated a new risk model for predicting progression to disease severity, hospitalization, admission to intensive care unit (ICU) and mortality in patients with COVID-19 infection (Gal-COVID-19 scores). Methods This is a retrospective cohort study of patients with COVID-19 infection confirmed by reverse transcription polymerase chain reaction (RT-PCR) in Galicia, Spain. Data were extracted from electronic health records of patients, including age, sex and comorbidities according to International Classification of Primary Care codes (ICPC-2). Logistic regression models were used to estimate the probability of disease severity. Calibration and discrimination were evaluated to assess model performance. Results The incidence of infection was 0.39% (10 454 patients). A total of 2492 patients (23.8%) required hospitalization, 284 (2.7%) were admitted to the ICU and 544 (5.2%) died. The variables included in the models to predict severity included age, gender and chronic comorbidities such as cardiovascular disease, diabetes, obesity, hypertension, chronic obstructive pulmonary disease, asthma, liver disease, chronic kidney disease and haematological cancer. The models demonstrated a fair–good fit for predicting hospitalization {AUC [area under the receiver operating characteristics (ROC) curve] 0.77 [95% confidence interval (CI) 0.76, 0.78]}, admission to ICU [AUC 0.83 (95%CI 0.81, 0.85)] and death [AUC 0.89 (95%CI 0.88, 0.90)]. Conclusions The Gal-COVID-19 scores provide risk estimates for predicting severity in COVID-19 patients. The ability to predict disease severity may help clinicians prioritize high-risk patients and facilitate the decision making of health authorities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
学术虫发布了新的文献求助10
2秒前
王泽然发布了新的文献求助10
2秒前
3秒前
慕青应助跑在颖采纳,获得10
4秒前
科研通AI2S应助344061512采纳,获得10
5秒前
zshdoct发布了新的文献求助10
5秒前
西红柿完成签到,获得积分10
5秒前
研友_VZG7GZ应助自觉的糖豆采纳,获得10
5秒前
feiyan发布了新的文献求助10
5秒前
老实翠绿完成签到,获得积分20
7秒前
冷傲翠绿完成签到,获得积分20
7秒前
科研通AI2S应助含糊的电源采纳,获得10
8秒前
春樹暮雲完成签到 ,获得积分10
8秒前
CipherSage应助桑尼号采纳,获得10
9秒前
9秒前
水的叶子66完成签到,获得积分10
10秒前
冷傲翠绿发布了新的文献求助10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
脑洞疼应助学术虫采纳,获得10
11秒前
CAOHOU应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
李健应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
12秒前
Wangyingjie5完成签到,获得积分10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
12秒前
xzy998应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760740
求助须知:如何正确求助?哪些是违规求助? 5525833
关于积分的说明 15398210
捐赠科研通 4897473
什么是DOI,文献DOI怎么找? 2634182
邀请新用户注册赠送积分活动 1582315
关于科研通互助平台的介绍 1537672