阴极
解耦(概率)
氧化还原
电化学
材料科学
中尺度气象学
同步加速器
电池(电)
锂离子电池
镍
化学物理
化学工程
纳米技术
电极
化学
冶金
物理
物理化学
热力学
光学
工程类
控制工程
气象学
功率(物理)
作者
Guannan Qian,Jin Zhang,Shengqi Chu,Jizhou Li,Kai Zhang,Qingxi Yuan,Zi‐Feng Ma,P. Pianetta,Linsen Li,Keeyoung Jung,Yijin Liu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-01-27
卷期号:6 (2): 687-693
被引量:65
标识
DOI:10.1021/acsenergylett.0c02699
摘要
The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properties at nano- to mesoscales is fundamental to the battery performance but not well-understood yet. Here we investigate the correlation between the local redox reaction and lattice mismatch through a nano-resolution synchrotron spectro-microscopy study of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM 811) cathode particles. With assistance from a machine-learning-based data classification method, we identify local regions that demonstrate a strain–redox decoupling effect, which can be attributed to different side reactions. Overall, our results highlight the mesoscale reaction heterogeneity in the battery cathode and suggest that particle structure engineering could be a viable approach to mitigate the chemomechanical degradation of cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI