高斯过程
克里金
计算机科学
高斯分布
差异(会计)
回归
方差函数
过程(计算)
高斯函数
贝叶斯概率
对比度(视觉)
回归分析
计量经济学
机器学习
数学
人工智能
统计
物理
量子力学
会计
业务
操作系统
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:15
标识
DOI:10.48550/arxiv.2102.05497
摘要
Within the past two decades, Gaussian process regression has been increasingly used for modeling dynamical systems due to some beneficial properties such as the bias variance trade-off and the strong connection to Bayesian mathematics. As data-driven method, a Gaussian process is a powerful tool for nonlinear function regression without the need of much prior knowledge. In contrast to most of the other techniques, Gaussian Process modeling provides not only a mean prediction but also a measure for the model fidelity. In this article, we give an introduction to Gaussian processes and its usage in regression tasks of dynamical systems. Try Gaussian process regression yourself: https://gpr.tbeckers.com
科研通智能强力驱动
Strongly Powered by AbleSci AI