A CT-based radiomics analysis for clinical staging of non-small cell lung cancer

医学 阶段(地层学) 接收机工作特性 逻辑回归 无线电技术 置信区间 肺癌 放射科 列线图 回顾性队列研究 病态的 癌胚抗原 肿瘤科 内科学 癌症 古生物学 生物
作者
Lan He,Yanqi Huang,Zhanjun Ma,Chun-Ling Liang,Xiaomei Huang,Zixuan Cheng,Chengcheng Liang
出处
期刊:Chinese journal of radiology 卷期号:51 (12): 906-911 被引量:1
标识
DOI:10.3760/cma.j.issn.1005-1201.2017.12.004
摘要

Objective To develop and validate a CT-based radiomics predictive model for preoperative predicting the stage of non-small cell lung cancer (NSCLC). Methods In this retrospective study, 657 patients with histologically confirmed was collected from October 2007 to December 2014. The primary dataset consisted of patients with histologically confirmed NSCLC from October 2007 to April 2012, while independent validation was conducted from May 2012 to December 2014. All the patients underwent non-enhanced and contrast-enhanced CT images scan with a standard protocol. The pathological stage (PTNM) of patients with NSCLC were determined by the intraoperative and postoperative pathological findings, and were divided into early stage (Ⅰ,Ⅱ stage) and advanced stage (Ⅲ,Ⅳ stage). A list of radiomics features were extracted using the software Matlab 2014a and the corresponding radiomics signature was constructed. Multivariable logistic regression analysis was performed with radiomics signature and clinical variables for developing the prediction model. The model performance was assessed with respect to discrimination using the area under the curve (AUC) of receiver operating characteristic(ROC) analysis. Results The discrimination performance of radiomics signature yielded a AUC of 0.715[95% confidence interval (CI):0.709 to 0.721] in the primary dataset and a AUC of 0.724(95%CI:0.717 to 0.731) in the validation dataset. On multivariable logistic regression, radiomics signature, tumor diameter, carcinoembryonic antigen (CEA) level, and cytokeratin 19 fragment (CYFRA21-1) level were showed independently associated with the stage (Ⅰ,Ⅱ stage vs. Ⅲ, Ⅳ stage) of NSCLC. The prediction model showed good discrimination in both primary dataset (AUC=0.787, 95%CI:0.781 to 0.793;sensitivity=73.4%, specificity=72.2%,positive predictive value=0.707,negative predictive value=0.868) and independent validation dataset (AUC=0.777, 95%CI:0.771 to 0.783,sensitivity=91.3%,specificity=67.3%,positive predictive value=0.607, negative predictive value=0.946). Conclusion The radiomics predictive model, which integrated with the radiomics signature and clinical characteristics can be used as a promising and applicable adjunct approach for preoperatively predicting the clinical stage (Ⅰ,Ⅱ stage vs. Ⅲ,Ⅳ stage) of patients with NSCLC. Key words: Lung neoplasms; Tomography,X-ray computed; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的语堂完成签到,获得积分20
1秒前
姜酱酱酱发布了新的文献求助10
1秒前
1秒前
1秒前
幽悠梦儿完成签到,获得积分10
1秒前
1秒前
两张发布了新的文献求助10
2秒前
2秒前
踏实紫萱发布了新的文献求助10
2秒前
张世琪发布了新的文献求助10
3秒前
3秒前
吃土豆的番茄完成签到,获得积分10
3秒前
奋斗的剑完成签到 ,获得积分10
5秒前
李英发布了新的文献求助10
5秒前
Theimma发布了新的文献求助30
5秒前
Kaiwei发布了新的文献求助10
6秒前
慕青应助鉨汏闫采纳,获得10
6秒前
灵巧的熊猫完成签到,获得积分10
8秒前
8秒前
安然完成签到 ,获得积分10
8秒前
9秒前
姜酱酱酱完成签到,获得积分10
9秒前
10秒前
bbbbfffff发布了新的文献求助20
11秒前
李健应助anyilin采纳,获得10
12秒前
kksk完成签到,获得积分10
12秒前
慕青应助可靠巧荷采纳,获得10
13秒前
13秒前
威武荔枝发布了新的文献求助10
13秒前
13秒前
锦墨人生完成签到,获得积分10
13秒前
14秒前
素龙发布了新的文献求助10
14秒前
16秒前
思念需要什么完成签到,获得积分10
16秒前
16秒前
for_abSCI发布了新的文献求助10
16秒前
陆仓颉发布了新的文献求助30
17秒前
邹栗发布了新的文献求助10
17秒前
英姑应助sunzhuxi采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463364
求助须知:如何正确求助?哪些是违规求助? 3926073
关于积分的说明 12183349
捐赠科研通 3578665
什么是DOI,文献DOI怎么找? 1966124
邀请新用户注册赠送积分活动 1004816
科研通“疑难数据库(出版商)”最低求助积分说明 899227