Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications

电容器 材料科学 电介质 陶瓷 储能 介电强度 陶瓷电容器 电场 复合材料 光电子学 电气工程 工程类 电压 功率(物理) 物理 量子力学
作者
Jinglei Li,Zhonghui Shen,Xianghua Chen,Shuai Yang,Wenlong Zhou,Mingwen Wang,Linghang Wang,Qiangwei Kou,Yingchun Liu,Qun Li,Zhuo Xu,Yunfei Chang,Shujun Zhang,Fei Li
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:19 (9): 999-1005 被引量:519
标识
DOI:10.1038/s41563-020-0704-x
摘要

Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na0.5Bi0.5TiO3–Sr0.7Bi0.2TiO3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m−1, an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm−3, outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na0.5Bi0.5TiO3–Sr0.7Bi0.2TiO3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm−3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助carpybala采纳,获得10
刚刚
AA1Z完成签到,获得积分10
1秒前
o_0发布了新的文献求助30
1秒前
3秒前
4秒前
缥缈的冰旋完成签到,获得积分10
5秒前
完美世界应助Landau采纳,获得10
6秒前
7秒前
博修发布了新的文献求助150
8秒前
8秒前
yu001完成签到,获得积分10
9秒前
安东尼发布了新的文献求助10
10秒前
10秒前
11秒前
orixero应助今天要喝椰汁采纳,获得10
12秒前
生动的梦寒完成签到,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得60
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
潇洒愚志发布了新的文献求助10
15秒前
19秒前
科研通AI5应助马安琪采纳,获得10
20秒前
t铁核桃1985完成签到 ,获得积分10
20秒前
Pigmentuman完成签到,获得积分10
20秒前
21秒前
今后应助Tempo采纳,获得10
22秒前
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451