Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause

弹性蛋白 细胞生物学 细胞外基质 卵泡发生 生物 卵泡 毛囊 赖氨酰氧化酶 卵巢 内分泌学 内科学 医学 遗传学 低温保存 胚胎
作者
Emna Ouni,Caroline Bouzin,Marie-Madeleine Dolmans,Etienne Marbaix,S. Pyr dit Ruys,Didier Vertommen,Christiani Andrade Amorim
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:35 (6): 1391-1410 被引量:34
标识
DOI:10.1093/humrep/deaa100
摘要

Abstract STUDY QUESTION How do elastic matrisome components change during the lifetime of the human ovary? SUMMARY ANSWER The deposition and remodeling of mechanical matrisome components (collagen, elastin, elastin microfibril interface-located protein 1 (EMILIN-1), fibrillin-1 and glycosaminoglycans (GAGs)) that play key roles in signaling pathways related to follicle activation and development evolve in an age- and follicle stage-related manner. WHAT IS KNOWN ALREADY The mechanobiology of the human ovary and dynamic reciprocity that exists between ovarian cells and their microenvironment is of high importance. Indeed, while the localization of primordial follicles in the collagen-rich ovarian cortex offers a rigid physical environment that supports follicle architecture and probably plays a role in their survival, ovarian extracellular matrix (ECM) stiffness limits follicle expansion and hence oocyte maturation, maintaining follicles in their quiescent state. As growing follicles migrate to the medulla of the ovary, they encounter a softer, more pliant ECM, allowing expansion and development. Thus, changes in the rigidity of the ovarian ECM have a direct effect on follicle behavior. Evidence supporting a role for the physical environment in follicle activation was provided in clinical practice by ovarian tissue fragmentation, which promoted actin polymerization and disrupted ovarian Hippo signaling, leading to increased expression of downstream growth factors, promotion of follicle growth and generation of mature oocytes. STUDY DESIGN, SIZE, DURATION We investigated quantitative spatiotemporal changes in collagen, elastin, EMILIN-1, fibrillin-1 and GAGs from prepuberty to menopause, before conducting a closer analysis of the ECM surrounding follicles, from primordial to secondary stages, in both prepubertal and tissue from women of reproductive age. The study included ovarian tissue (cortex) from 68 patients of different ages: prepubertal (n = 16; mean age [±SD]=8 ± 2 years); reproductive (n = 21; mean age [±SD]=27 ± 4 years); menopausal with estrogen-based HRT (n = 7; mean age [±SD]=58 ± 4 years); and menopausal without HRT (n = 24; mean age [±SD]=61 ± 5 years). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative investigations of collagen and GAG deposition in ovarian tissue throughout a woman’s lifetime were conducted by analyzing brightfield images. Characteristic features of collagen fiber content were based on polarized light microscopy, since polarized light changes with fiber thickness. To evaluate the deposition and distribution of elastin, fibrillin-1 and EMILIN-1, multiplex immunofluorescence was used on at least three sections from each patient. Image processing and tailored bioinformatic analysis were applied to enable spatiotemporal quantitative evaluation of elastic system component deposition in the human ovary over its lifetime. MAIN RESULTS AND THE ROLE OF CHANCE While collagen levels increased with age, fibrillin-1 and EMILIN-1 declined. Interestingly, collagen and elastin reached their peak in reproductive-age women compared to prepubertal (P < 0.01; P = 0.262) and menopausal subjects with (P = 0.706; P < 0.01) and without (P = 0.987; P = 0.610) HRT, indicating a positive impact of secreted estrogen and hormone treatment on collagen and elastin preservation. Interestingly, HRT appears to affect elastin presence in ovarian tissue, since a significantly higher (P < 0.05) proportion of elastin was detected in biopsies from menopausal women taking HRT compared to those not. Higher GAG levels were found in adult ovaries compared to prepubertal ovaries (P < 0.05), suggesting changes in tissue ultrastructure and elasticity with age. In this context, elevated GAG values are suspected to participate in hampering formation of the fibrillin-1 network (r = −0.2475; P = 0.04687), which explains its decline over time. This decline partially accounts for the decrease in EMILIN-1 (r = 0.4149; P = 0.00059). Closer examination of the ECM surrounding follicles from the primordial to the secondary stage, both before and after puberty, points to high levels of mechanical stress placed on prepubertal follicles compared to the more compliant ECM around reproductive-age follicles, as suggested by the higher collagen levels and lower elastin content detected mainly around primordial (P < 0.0001; P < 0.0001, respectively) and primary (P < 0.0001; P < 0.001, respectively) follicles. Such a stiff niche is nonpermissive to prepubertal follicle activation and growth, and is more inclined to quiescence. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The duration and form of administered HRT were not considered when studying the menopausal patient group undergoing treatment. Moreover, we cannot exclude interference from other nongynecological medications taken by the study patients on ovarian ECM properties since there is no information in the literature describing the impact of each medication on the ECM. Finally, since the ECM is by definition a very heterogeneous meshwork of proteins, the use of two-dimensional histology could be a limitation. Single time points on fixed tissues could also present limitations, since following ovary dynamics from prepuberty to menopause in the same patient is not feasible. WIDER IMPLICATIONS OF THE FINDINGS From a biomechanical perspective, our study revealed important changes to ECM properties dictating the mechanical features of ovarian tissue, in line with the existing literature. Our findings pave the way for possible therapeutic targets at the ECM level in the context of female fertility and ovarian rejuvenation, such as mechanical stimulation, antifibrotic treatments, and prevention or reversion of elastic ECM degradation. Our study also sheds light on the follicle-specific ECM composition that is dependent on follicle stage and age. These data will prove very useful in designing biomimetic scaffolds and tissue-engineered models like the artificial ovary. Indeed, they emphasize the importance of encapsulating each type of isolated follicle in an appropriate biomaterial that must replicate the corresponding functional perifollicular ECM and respect ovarian tissue heterogeneity in order to guarantee its biomimicry. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS research associate; grant 5/4/150/5 awarded to M.M.D.) and the Université Catholique de Louvain (PhD grant ‘Coopération au développement’ awarded to E.O.). None of the authors have any competing interests to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗星发布了新的文献求助10
刚刚
整齐的电源完成签到 ,获得积分10
2秒前
康康XY完成签到 ,获得积分10
3秒前
研友_pLwBm8发布了新的文献求助10
3秒前
桐桐应助小西米采纳,获得10
3秒前
贪玩绿草完成签到 ,获得积分10
3秒前
天天向上发布了新的文献求助10
3秒前
科研通AI5应助WQY采纳,获得10
5秒前
明理问柳完成签到,获得积分10
6秒前
7秒前
晓生完成签到,获得积分10
7秒前
9秒前
holland完成签到 ,获得积分10
9秒前
淡定的蛋挞完成签到,获得积分10
11秒前
14秒前
Arya发布了新的文献求助10
14秒前
bubu完成签到,获得积分10
16秒前
17秒前
脑洞疼应助su采纳,获得10
18秒前
落寞臻发布了新的文献求助10
19秒前
19秒前
22秒前
嘟嘟完成签到,获得积分10
23秒前
科研小白发布了新的文献求助10
23秒前
23秒前
啊啊啊哦哦哦完成签到,获得积分10
24秒前
24秒前
25秒前
故酒应助Qyyy采纳,获得10
26秒前
Lucas应助二手的科学家采纳,获得10
27秒前
tiantian8715发布了新的文献求助10
27秒前
科研通AI5应助某某采纳,获得10
27秒前
su完成签到,获得积分20
28秒前
28秒前
dmr发布了新的文献求助30
29秒前
珈蓝完成签到,获得积分10
30秒前
研友_pLwBm8完成签到,获得积分10
30秒前
隐形曼青应助宇宙的琴弦采纳,获得10
30秒前
zho发布了新的文献求助10
30秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777