已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Algorithmic content moderation: Technical and political challenges in the automation of platform governance

适度 公司治理 计算机科学 社会技术系统 政府(语言学) 计算机安全 政治 意外后果 互联网隐私 数据科学 政治学 知识管理 法学 业务 机器学习 语言学 哲学 财务
作者
Robert Gorwa,Reuben Binns,Christian Katzenbach
出处
期刊:Big Data & Society [SAGE]
卷期号:7 (1): 205395171989794-205395171989794 被引量:797
标识
DOI:10.1177/2053951719897945
摘要

As government pressure on major technology companies builds, both firms and legislators are searching for technical solutions to difficult platform governance puzzles such as hate speech and misinformation. Automated hash-matching and predictive machine learning tools – what we define here as algorithmic moderation systems – are increasingly being deployed to conduct content moderation at scale by major platforms for user-generated content such as Facebook, YouTube and Twitter. This article provides an accessible technical primer on how algorithmic moderation works; examines some of the existing automated tools used by major platforms to handle copyright infringement, terrorism and toxic speech; and identifies key political and ethical issues for these systems as the reliance on them grows. Recent events suggest that algorithmic moderation has become necessary to manage growing public expectations for increased platform responsibility, safety and security on the global stage; however, as we demonstrate, these systems remain opaque, unaccountable and poorly understood. Despite the potential promise of algorithms or ‘AI’, we show that even ‘well optimized’ moderation systems could exacerbate, rather than relieve, many existing problems with content policy as enacted by platforms for three main reasons: automated moderation threatens to (a) further increase opacity, making a famously non-transparent set of practices even more difficult to understand or audit, (b) further complicate outstanding issues of fairness and justice in large-scale sociotechnical systems and (c) re-obscure the fundamentally political nature of speech decisions being executed at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Jzhaoc580完成签到 ,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
G13发布了新的文献求助10
3秒前
3秒前
6秒前
YCYycy完成签到,获得积分10
6秒前
guo发布了新的文献求助10
7秒前
科研通AI6应助慕鳞采纳,获得10
8秒前
8秒前
小满完成签到,获得积分10
9秒前
小白果果发布了新的文献求助10
9秒前
kei完成签到 ,获得积分10
10秒前
G13完成签到,获得积分20
10秒前
12秒前
无极微光应助鱼丸哒采纳,获得20
14秒前
吴彦祖发布了新的文献求助20
15秒前
15秒前
ZXD1989完成签到 ,获得积分10
16秒前
16秒前
利于蓄力完成签到,获得积分20
17秒前
LY完成签到,获得积分10
17秒前
18秒前
孤央完成签到 ,获得积分10
18秒前
外向如冬完成签到,获得积分10
18秒前
19秒前
咕咕咕发布了新的文献求助10
19秒前
利于蓄力发布了新的文献求助10
20秒前
xd_c发布了新的文献求助10
22秒前
外向如冬发布了新的文献求助10
22秒前
lucky发布了新的文献求助10
25秒前
25秒前
27秒前
缺口口完成签到 ,获得积分10
28秒前
灵感大王喵完成签到 ,获得积分10
34秒前
yanyue完成签到,获得积分10
34秒前
Xing完成签到,获得积分10
35秒前
36秒前
37秒前
zhangnan完成签到 ,获得积分10
39秒前
王俊杰完成签到,获得积分10
39秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502405
求助须知:如何正确求助?哪些是违规求助? 4598324
关于积分的说明 14463673
捐赠科研通 4531855
什么是DOI,文献DOI怎么找? 2483679
邀请新用户注册赠送积分活动 1466924
关于科研通互助平台的介绍 1439561