An efficient approach to recognize hand gestures using machine-learning algorithms

手势 支持向量机 人工智能 计算机科学 线性判别分析 模式识别(心理学) 随机森林 手势识别 朴素贝叶斯分类器 肌电图 机器学习 语音识别 均方根 均方误差 算法 数学 统计 工程类 物理医学与康复 电气工程 医学
作者
Md Ferdous Wahid,Reza Langari,Mubarak Al-Sowaidi,Reza Langari
标识
DOI:10.1109/mecbme.2018.8402428
摘要

Electromyography (EMG) from a subject's upper limb can be used to train a machine-learning algorithm to classify different hand gestures. However, variability in the EMG signal due to between-subject differences can substantially degrade the machine-learning performance. This variation is usually due to the differences in both anatomical and physiological properties of the muscles, levels of muscle contraction, and inherent noises from the sensors. The aim of this study is to develop a subject-independent algorithm that can accurately classify different hand gestures. To minimize the between-subject differences, some selected time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Five adult subjects with ages ranging 20-37 years performed three hand gestures including fist, wave-in, and wave-out for ten to twelve times each. Five machine-learning algorithms, including ¿-nearest neighbor (KNN), discriminant analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the EMG features were moderately to strongly correlated with the AUC-RMS values. The SVM yielded maximum classification accuracy using the original EMG features (97.56%) which was significantly improved by using the normalized EMG features (98.73%) (p<;0.05). The accuracy distribution of all classifiers were found to be closer to mean values when using the normalized EMG features compared to using the original EMG features. The developed approach of classifying different hand gestures will be useful in biomedical applications such as controlling exoskeletons and in certain human-computer interaction settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
披荆斩棘的王多福完成签到,获得积分10
刚刚
2秒前
3秒前
大气夜南发布了新的文献求助30
3秒前
3秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
震震应助科研通管家采纳,获得20
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
wy.he应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
今后应助科研通管家采纳,获得10
7秒前
wy.he应助科研通管家采纳,获得10
8秒前
zhutier完成签到,获得积分10
8秒前
8秒前
8秒前
如意草丛发布了新的文献求助10
10秒前
11秒前
13秒前
orixero应助伶俐元芹采纳,获得10
13秒前
15秒前
16秒前
仓鼠本鼠给仓鼠本鼠的求助进行了留言
16秒前
药学小团子完成签到,获得积分10
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339