转向架
振动
声学
光谱密度
随机振动
声压
火车
声功率
噪音(视频)
有限元法
加速度
工程类
结构工程
声辐射
航程(航空)
辐射
物理
计算机科学
光学
声音(地理)
图像(数学)
航空航天工程
人工智能
电信
经典力学
地图学
地理
作者
Wang Dongzhen,Jianmin Ge
标识
DOI:10.1007/s40534-019-0183-4
摘要
Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains' bogie area were studied. Firstly, combined with line tests, a vehicle body with a length of 7 m was used as the research object. By comparing the results of experiment and simulation, the accuracy of the finite element model was verified. Secondly, the power spectral density curves at typical measuring points in bogie area were obtained by processing and calculating the line test data, which was measured when the vehicle ran at high speeds, and the standard vibration spectrum of the bogie area was obtained by the extreme envelope method. Furthermore, the random vibration test and simulation prediction analysis of the real vehicle structure were carried out to further verify the accuracy of the noise and vibration prediction model. Finally, according to the vibration and acoustic radiation theory, the indirect boundary element method was adopted to predict the acoustic response of the real vehicle. The analysis shows that the simulated power spectral density curves of acceleration and sound pressure level are highly consistent with the experimental ones, and the error between the simulated prediction and the experimental result is within the allowable range of 3 dB.
科研通智能强力驱动
Strongly Powered by AbleSci AI