电导
门控
材料科学
干扰(通信)
共振(粒子物理)
分子线
量子
电化学电位
光电子学
分子物理学
分子
化学物理
化学
电化学
电极
原子物理学
凝聚态物理
物理
量子力学
电气工程
工程类
频道(广播)
生物
生理学
作者
Jie Bai,Abdalghani Daaoub,Sara Sangtarash,Xiaohui Li,Yongxiang Tang,Qi Zou,Hatef Sadeghi,Shuai Liu,Xiaojuan Huang,Zhibing Tan,Junyang Liu,Yang Yang,Jia Shi,Gábor Mészáros,Wenbo Chen,Colin J. Lambert,Wenjing Hong
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2019-02-11
卷期号:18 (4): 364-369
被引量:233
标识
DOI:10.1038/s41563-018-0265-4
摘要
Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects has potential for the realization of high-performance functional molecular devices. In this work we used an electrochemically gated, mechanically controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference features. By varying the voltage applied to the electrochemical gate at room temperature, we reached a conductance minimum that provides direct evidence of charge transport controlled by an anti-resonance arising from destructive quantum interference. Our molecular system enables conductance tuning close to two orders of magnitude within the non-faradaic potential region, which is significantly higher than that achieved with molecules not showing destructive quantum interference. Our experimental results, interpreted using quantum transport theory, demonstrate that electrochemical gating is a promising strategy for obtaining improved in situ control over the electrical performance of interference-based molecular devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI